Source code for lightkurve.lightcurve

"""Defines LightCurve, KeplerLightCurve, and TessLightCurve."""
import os
import datetime
import logging
import warnings
import collections
from collections.abc import Sequence

import numpy as np
from scipy.signal import savgol_filter
from scipy.interpolate import interp1d
import matplotlib
from matplotlib import pyplot as plt
from copy import deepcopy

from astropy.table import Table, Column, MaskedColumn
from astropy.io import fits
from astropy.time import TimeBase, Time, TimeDelta
from astropy import units as u
from astropy.units import Quantity
from astropy.timeseries import TimeSeries, aggregate_downsample
from astropy.table import vstack
from astropy.stats import calculate_bin_edges
from astropy.utils.decorators import deprecated, deprecated_renamed_argument
from astropy.utils.exceptions import AstropyUserWarning
from astropy.utils.masked import Masked

from . import PACKAGEDIR, MPLSTYLE
from .utils import (
    running_mean,
    bkjd_to_astropy_time,
    btjd_to_astropy_time,
    validate_method,
    _query_solar_system_objects,
    finalize_notebook_url
)
from .utils import LightkurveWarning, LightkurveDeprecationWarning


__all__ = ["LightCurve", "KeplerLightCurve", "TessLightCurve", "FoldedLightCurve"]

log = logging.getLogger(__name__)

_HAS_VAR_BINS = 'time_bin_end' in aggregate_downsample.__kwdefaults__

def _to_unitless_day(data):
    if isinstance(data, Quantity):
        return data.to(u.day).value
    elif not np.isscalar(data):
        return np.asarray([_to_unitless_day(item) for item in data]).flatten()
    else:
        return data


def _is_dict_like(data1):
    return hasattr(data1, "keys") and callable(getattr(data1, "keys"))


def _is_list_like(data1):
    # https://stackoverflow.com/a/37842328
    return isinstance(data1, Sequence) and not isinstance(data1, str)


def _is_np_structured_array(data1):
    return isinstance(data1, np.ndarray) and data1.dtype.names is not None


[docs]class LightCurve(TimeSeries): """ Subclass of AstroPy `~astropy.table.Table` guaranteed to have *time*, *flux*, and *flux_err* columns. Compared to the generic `~astropy.timeseries.TimeSeries` class, `LightCurve` ensures that each object has `time`, `flux`, and `flux_err` columns. These three columns are special for two reasons: 1. they are the key columns upon which all light curve operations operate; 2. they are always present (though they may be populated with ``NaN`` values). `LightCurve` objects also provide user-friendly attribute access to columns and meta data. Parameters ---------- data : numpy ndarray, dict, list, `~astropy.table.Table`, or table-like object, optional Data to initialize time series. This does not need to contain the times or fluxes, which can be provided separately, but if it does contain the times and fluxes they should be in columns called ``'time'``, ``'flux'``, and ``'flux_err'`` to be automatically recognized. time : `~astropy.time.Time` or iterable Time values. They can either be given directly as a `~astropy.time.Time` array or as any iterable that initializes the `~astropy.time.Time` class. flux : `~astropy.units.Quantity` or iterable Flux values for every time point. flux_err : `~astropy.units.Quantity` or iterable Uncertainty on each flux data point. **kwargs : dict Additional keyword arguments are passed to `~astropy.table.QTable`. Attributes ---------- meta : `dict` meta data associated with the lightcurve. The header of the underlying FITS file (if applicable) is store in this dictionary. By convention, keys in this dictionary are usually in uppercase. Notes ----- *Attribute access*: You can access a column or a ``meta`` value directly as an attribute. >>> lc.flux # shortcut for lc['flux'] # doctest: +SKIP >>> lc.sector # shortcut for lc.meta['SECTOR'] # doctest: +SKIP >>> lc.flux = lc.flux * 1.05 # update the values of a column. # doctest: +SKIP In case the given name is both a column name and a key in ``meta``, the column will be returned. Note that you *cannot* create a new column using the attribute interface. If you do so, a new attribute is created instead, and a warning is raised. If you do create such attributes on purpose, please note that the attributes are not carried over when the lightcurve object is copied, or a new lightcurve object is derived based on a copy, e.g., ``normalize()``. Examples -------- >>> import lightkurve as lk >>> lc = lk.LightCurve(time=[1, 2, 3, 4], flux=[0.98, 1.02, 1.03, 0.97]) >>> lc.time <Time object: scale='tdb' format='jd' value=[1. 2. 3. 4.]> >>> lc.flux <Quantity [0.98, 1.02, 1.03, 0.97]> >>> lc.bin(time_bin_size=2, time_bin_start=0.5).flux <Quantity [1., 1.]> """ # The constructor of the `TimeSeries` base class will enforce the presence # of these columns: _required_columns = ["time", "flux", "flux_err"] # The following keywords were removed in Lightkurve v2.0. # Their use will trigger a warning. _deprecated_keywords = ( "targetid", "label", "time_format", "time_scale", "flux_unit", ) _deprecated_column_keywords = [ "centroid_col", "centroid_row", "cadenceno", "quality", ] # If an iterable is passed for ``time``, we will initialize an AstroPy # ``Time`` object using the following format and scale: _default_time_format = "jd" _default_time_scale = "tdb" # To emulate pandas, we do not support creating new columns or meta data # fields via attribute assignment, and raise a warning in __setattr__ when # a new attribute is created. We need to relax this warning during the # initial construction of the object using `_new_attributes_relax`. _new_attributes_relax = True # cf. issue #925 __array_priority__ = 100_000
[docs] def __init__(self, data=None, *args, time=None, flux=None, flux_err=None, **kwargs): # the ` {has,get,set}_time_in_data()`: helpers to handle `data` of different types # in some cases, they also need to access kwargs["names"] as well def get_time_idx_in(names): time_indices = np.argwhere(np.asarray(names) == "time") if len(time_indices) > 0: return time_indices[0][0] else: return None def get_time_in_data_list(): if len(data) < 1: return None names = kwargs.get("names") if names is None: # the first item MUST be time if no names specified if isinstance(data[0], TimeBase): # Time or TimeDelta return data[0] else: return None else: time_idx = get_time_idx_in(names) if time_idx is not None: return data[time_idx] else: return None def set_time_in_data_list(value): if len(data) < 1: raise AssertionError("data should be non-empty") names = kwargs.get("names") if names is None: # the first item MUST be time if no names specified # this is to support base Table's select columns # in __getitem__() # https://github.com/astropy/astropy/blob/326435449ad8d859f1abf36800c3fb88d49c27ea/astropy/table/table.py#L1888 data[0] = value else: time_idx = get_time_idx_in(names) if time_idx is not None: data[time_idx] = value else: raise AssertionError("data should have time column") def get_time_in_data_np_structured_array(): if data.dtype.names is None: # no labeled filed, not a structured array return None if "time" not in data.dtype.names: return None return data["time"] def remove_time_from_data_np_structured_array(): if data.dtype.names is None: raise AssertionError("data should be a numpy structured array") if "time" not in data.dtype.names: raise AssertionError("data should have a time field") filtered_names = [n for n in data.dtype.names if n != "time"] return data[filtered_names] def has_time_in_data(): """Check if the data has a column with the name""" if data is None: return False elif _is_dict_like(data): # data is a dict-like object with keys return "time" in data.keys() elif _is_list_like(data): # case data is a list-like object (a list of columns, etc.) return get_time_in_data_list() is not None elif _is_np_structured_array(data): # case numpy structured array (supported by base TimeSeries) # https://numpy.org/doc/stable/user/basics.rec.html return get_time_in_data_np_structured_array() is not None else: raise ValueError(f"Unsupported type for time in data: {type(data)}") def get_time_in_data(): if _is_dict_like(data): # data is a dict-like object with keys return data["time"] elif _is_list_like(data): return get_time_in_data_list() elif _is_np_structured_array(data): return get_time_in_data_np_structured_array() else: # should never reach here. It'd have been caught by `has_time_in()`` raise AssertionError("Unsupported type for time in data") def set_time_in_data(value): if _is_dict_like(data): # data is a dict-like object with keys data["time"] = value elif _is_list_like(data): set_time_in_data_list(value) elif _is_np_structured_array(data): # astropy Time cannot be assigned to a column in np structured array # we have special codepath handling it outside this function raise AssertionError("Setting Time instances to np structured array is not supported") else: # should never reach here. It'd have been caught by `has_time_in()`` raise AssertionError("Unsupported type for time in data") # Delay checking for required columns until the end self._required_columns_relax = True # Lightkurve v1.x supported passing time, flux, and flux_err as # positional arguments. We support it here for backwards compatibility. if len(args) in [1, 2]: warnings.warn( "passing flux as a positional argument is deprecated" ", please use ``flux=...`` instead.", LightkurveDeprecationWarning, ) time = data flux = args[0] data = None if len(args) == 2: flux_err = args[1] # For backwards compatibility with Lightkurve v1.x, # we support passing deprecated keywords via **kwargs. deprecated_kws = {} for kw in self._deprecated_keywords: if kw in kwargs: deprecated_kws[kw] = kwargs.pop(kw) deprecated_column_kws = {} for kw in self._deprecated_column_keywords: if kw in kwargs: deprecated_column_kws[kw] = kwargs.pop(kw) # If `time` is passed as keyword argument, we populate it with integer numbers if data is None or not has_time_in_data(): if time is None and flux is not None: time = np.arange(len(flux)) # We are tolerant of missing time format if time is not None and not isinstance(time, (Time, TimeDelta)): # Lightkurve v1.x supported specifying the time_format # as a constructor kwarg time = Time( time, format=deprecated_kws.get("time_format", self._default_time_format), scale=deprecated_kws.get("time_scale", self._default_time_scale), ) # Also be tolerant of missing time format if time is passed via `data` if data is not None and has_time_in_data(): if not isinstance(get_time_in_data(), (Time, TimeDelta)): tmp_time = Time( get_time_in_data(), format=deprecated_kws.get("time_format", self._default_time_format), scale=deprecated_kws.get("time_scale", self._default_time_scale), ) if _is_np_structured_array(data): # special case for np structured array # one cannot set a `Time` instance to it # so we set the time to the `time` param, and take it out of data time = tmp_time data = remove_time_from_data_np_structured_array() else: set_time_in_data(tmp_time) # Allow overriding the required columns self._required_columns = kwargs.pop("_required_columns", self._required_columns) # Call the SampledTimeSeries constructor. # Disable required columns for now; we'll check those later. tmp = self._required_columns self._required_columns = [] super().__init__(data=data, time=time, **kwargs) self._required_columns = tmp # For some operations, an empty time series needs to be created, then # columns added one by one. We should check that when columns are added # manually, time is added first and is of the right type. if data is None and time is None and flux is None and flux_err is None: self._required_columns_relax = True return # Load `time`, `flux`, and `flux_err` from the table as local variable names time = self.columns["time"] # super().__init__() guarantees this is a column if "flux" in self.colnames: if flux is None: flux = self.columns["flux"] else: raise TypeError( f"'flux' has been given both in the `data` table and as a keyword argument" ) if "flux_err" in self.colnames: if flux_err is None: flux_err = self.columns["flux_err"] else: raise TypeError( f"'flux_err' has been given both in the `data` table and as a keyword argument" ) # Ensure `flux` and `flux_err` are populated with NaNs if missing if flux is None and time is not None: flux = np.empty(len(time)) flux[:] = np.nan if not isinstance(flux, Quantity): flux = Quantity(flux, deprecated_kws.get("flux_unit")) if flux_err is None: flux_err = np.empty(len(flux)) flux_err[:] = np.nan if not isinstance(flux_err, Quantity): flux_err = Quantity(flux_err, flux.unit) # Backwards compatibility with Lightkurve v1.x # Ensure attributes are set if passed via deprecated kwargs for kw in deprecated_kws: if kw not in self.meta: self.meta[kw.upper()] = deprecated_kws[kw] # Ensure all required columns are in the right order with self._delay_required_column_checks(): for idx, col in enumerate(self._required_columns): if col in self.colnames: self.remove_column(col) self.add_column(locals()[col], index=idx, name=col) # Ensure columns are set if passed via deprecated kwargs for kw in deprecated_column_kws: if kw not in self.meta and kw not in self.columns: self.add_column(deprecated_column_kws[kw], name=kw) # Ensure flux and flux_err have the same units if self["flux"].unit != self["flux_err"].unit: raise ValueError("flux and flux_err must have the same units") self._new_attributes_relax = False self._required_columns_relax = False self._check_required_columns()
def __getattr__(self, name, **kwargs): """Expose all columns and meta keywords as attributes.""" if name in self.__dict__: return self.__dict__[name] elif name in self.__class__.__dict__: return self.__class__.__dict__[name].__get__(self) elif name in self.columns: return self[name] elif "_meta" in self.__dict__: if name in self.__dict__["_meta"]: return self.__dict__["_meta"][name] elif name.upper() in self.__dict__["_meta"]: return self.__dict__["_meta"][name.upper()] raise AttributeError(f"object has no attribute {name}") def __setattr__(self, name, value, **kwargs): """To get copied, attributes have to be stored in the meta dictionary!""" to_set_as_attr = False if name in self.__dict__: to_set_as_attr = True elif name == "time": self["time"] = value # astropy will convert value to Time if needed elif ("columns" in self.__dict__) and (name in self.__dict__["columns"]): self.replace_column(name, value) elif "_meta" in self.__dict__: if name in self.__dict__["_meta"]: self.__dict__["_meta"][name] = value elif name.upper() in self.__dict__["_meta"]: self.__dict__["_meta"][name.upper()] = value else: to_set_as_attr = True else: to_set_as_attr = True if to_set_as_attr: if ( name not in self.__dict__ and not name.startswith("_") and not self._new_attributes_relax and name != 'meta' ): warnings.warn( ( "Lightkurve doesn't allow columns or meta values to be created via a new attribute name." "A new attribute is created. It will not be carried over when the object is copied." " - see https://docs.lightkurve.org/reference/api/lightkurve.LightCurve.html" ), UserWarning, stacklevel=2, ) super().__setattr__(name, value, **kwargs) def _repr_simple_(self) -> str: """Returns a simple __repr__. Used by `LightCurveCollection`. """ result = f"<{self.__class__.__name__}" if "LABEL" in self.meta: result += f" LABEL=\"{self.meta.get('LABEL')}\"" for kw in ["QUARTER", "CAMPAIGN", "SECTOR", "AUTHOR", "FLUX_ORIGIN"]: if kw in self.meta: result += f" {kw}={self.meta.get(kw)}" result += ">" return result def _base_repr_(self, html=False, descr_vals=None, **kwargs): """Defines the description shown by `__repr__` and `_html_repr_`.""" if descr_vals is None: descr_vals = [self.__class__.__name__] if self.masked: descr_vals.append("masked=True") descr_vals.append("length={}".format(len(self))) if "LABEL" in self.meta: descr_vals.append(f"LABEL=\"{self.meta.get('LABEL')}\"") for kw in ["QUARTER", "CAMPAIGN", "SECTOR", "AUTHOR", "FLUX_ORIGIN"]: if kw in self.meta: descr_vals.append(f"{kw}={self.meta.get(kw)}") return super()._base_repr_(html=html, descr_vals=descr_vals, **kwargs) # Define `time`, `flux`, `flux_err` as class attributes to enable IDE # of these required columns auto-completion. @property def time(self) -> Time: """Time values stored as an AstroPy `~astropy.time.Time` object.""" return self["time"] @time.setter def time(self, time): self["time"] = time @property def flux(self) -> Quantity: """Brightness values stored as an AstroPy `~astropy.units.Quantity` object.""" return self["flux"] @flux.setter def flux(self, flux): self["flux"] = flux @property def flux_err(self) -> Quantity: """Brightness uncertainties stored as an AstroPy `~astropy.units.Quantity` object.""" return self["flux_err"] @flux_err.setter def flux_err(self, flux_err): self["flux_err"] = flux_err
[docs] def select_flux(self, flux_column, flux_err_column=None): """Assign a different column to be the flux column. This method returns a copy of the LightCurve in which the ``flux`` and ``flux_err`` columns have been replaced by the values contained in a different column. Parameters ---------- flux_column : str Name of the column that should become the 'flux' column. flux_err_column : str or `None` Name of the column that should become the 'flux_err' column. By default, the column will be used that is obtained by adding the suffix "_err" to the value of ``flux_column``. If such a column does not exist, ``flux_err`` will be populated with NaN values. Returns ------- lc : LightCurve Copy of the ``LightCurve`` object with the new flux values assigned. Examples -------- You can use this function to change the flux data on which most Lightkurve features operate. For example, to view a periodogram based on the "sap_flux" column in a TESS light curve, use:: >>> lc.select_flux("sap_flux").to_periodogram("lombscargle").plot() # doctest: +SKIP """ # Input validation if flux_column not in self.columns: raise ValueError(f"'{flux_column}' is not a column") if flux_err_column and flux_err_column not in self.columns: raise ValueError(f"'{flux_err_column}' is not a column") lc = self.copy() lc["flux"] = lc[flux_column] if flux_err_column: # not None lc["flux_err"] = lc[flux_err_column] else: # if `flux_err_column` is unspecified, we attempt to use # f"{flux_column}_err" if it exists flux_err_column = f"{flux_column}_err" if flux_err_column in lc.columns: lc["flux_err"] = lc[flux_err_column] else: lc["flux_err"][:] = np.nan lc.meta['FLUX_ORIGIN'] = flux_column normalized_new_flux = lc["flux"].unit is None or lc["flux"].unit is u.dimensionless_unscaled # Note: here we assume unitless flux means it's normalized # it's not exactly true in many constructed lightcurves in unit test # but the assumption should hold for any real world use cases, e.g. TESS QLP if normalized_new_flux: lc.meta["NORMALIZED"] = normalized_new_flux else: # remove it altogether. # Setting to False would suffice; # but in typical non-normalized LC, the header will not be there at all. lc.meta.pop("NORMALIZED", None) return lc
# Define deprecated attributes for compatibility with Lightkurve v1.x: @property @deprecated( "2.0", alternative="time.format", warning_type=LightkurveDeprecationWarning ) def time_format(self): return self.time.format @property @deprecated( "2.0", alternative="time.scale", warning_type=LightkurveDeprecationWarning ) def time_scale(self): return self.time.scale @property @deprecated("2.0", alternative="time", warning_type=LightkurveDeprecationWarning) def astropy_time(self): return self.time @property @deprecated( "2.0", alternative="flux.unit", warning_type=LightkurveDeprecationWarning ) def flux_unit(self): return self.flux.unit @property @deprecated("2.0", alternative="flux", warning_type=LightkurveDeprecationWarning) def flux_quantity(self): return self.flux @property @deprecated( "2.0", alternative="fits.open(lc.filename)", warning_type=LightkurveDeprecationWarning, ) def hdu(self): return fits.open(self.filename) @property @deprecated("2.0", warning_type=LightkurveDeprecationWarning) def SAP_FLUX(self): """A copy of the light curve in which `lc.flux = lc.sap_flux` and `lc.flux_err = lc.sap_flux_err`. It is provided for backwards- compatibility with Lightkurve v1.x and will be removed soon.""" lc = self.copy() lc["flux"] = lc["sap_flux"] lc["flux_err"] = lc["sap_flux_err"] return lc @property @deprecated("2.0", warning_type=LightkurveDeprecationWarning) def PDCSAP_FLUX(self): """A copy of the light curve in which `lc.flux = lc.pdcsap_flux` and `lc.flux_err = lc.pdcsap_flux_err`. It is provided for backwards- compatibility with Lightkurve v1.x and will be removed soon.""" lc = self.copy() lc["flux"] = lc["pdcsap_flux"] lc["flux_err"] = lc["pdcsap_flux_err"] return lc def __add__(self, other): newlc = self.copy() if isinstance(other, LightCurve): if len(self) != len(other): raise ValueError( "Cannot add LightCurve objects because " "they do not have equal length ({} vs {})." "".format(len(self), len(other)) ) if np.any(self.time != other.time): warnings.warn( "Two LightCurve objects with inconsistent time " "values are being added.", LightkurveWarning, ) newlc.flux = self.flux + other.flux newlc.flux_err = np.hypot(self.flux_err, other.flux_err) else: newlc.flux = self.flux + other return newlc def __radd__(self, other): return self.__add__(other) def __sub__(self, other): return self.__add__(-1 * other) def __rsub__(self, other): return (-1 * self).__add__(other) def __mul__(self, other): newlc = self.copy() if isinstance(other, LightCurve): if len(self) != len(other): raise ValueError( "Cannot multiply LightCurve objects because " "they do not have equal length ({} vs {})." "".format(len(self), len(other)) ) if np.any(self.time != other.time): warnings.warn( "Two LightCurve objects with inconsistent time " "values are being multiplied.", LightkurveWarning, ) newlc.flux = self.flux * other.flux # Applying standard uncertainty propagation, cf. # https://en.wikipedia.org/wiki/Propagation_of_uncertainty#Example_formulae newlc.flux_err = abs(newlc.flux) * np.hypot( self.flux_err / self.flux, other.flux_err / other.flux ) elif isinstance( other, (u.UnitBase, u.FunctionUnitBase) ): # cf. astropy/issues/6517 newlc.flux = other * self.flux newlc.flux_err = other * self.flux_err else: newlc.flux = other * self.flux newlc.flux_err = abs(other) * self.flux_err return newlc def __rmul__(self, other): return self.__mul__(other) def __truediv__(self, other): return self.__mul__(1.0 / other) def __rtruediv__(self, other): newlc = self.copy() if isinstance(other, LightCurve): if len(self) != len(other): raise ValueError( "Cannot divide LightCurve objects because " "they do not have equal length ({} vs {})." "".format(len(self), len(other)) ) if np.any(self.time != other.time): warnings.warn( "Two LightCurve objects with inconsistent time " "values are being divided.", LightkurveWarning, ) newlc.flux = other.flux / self.flux newlc.flux_err = abs(newlc.flux) * np.hypot( self.flux_err / self.flux, other.flux_err / other.flux ) else: newlc.flux = other / self.flux newlc.flux_err = abs((other * self.flux_err) / (self.flux ** 2)) return newlc def __div__(self, other): return self.__truediv__(other) def __rdiv__(self, other): return self.__rtruediv__(other) def show_properties(self): """Prints a description of all non-callable attributes. Prints in order of type (ints, strings, lists, arrays, others). """ attrs = {} deprecated_properties = list(self._deprecated_keywords) deprecated_properties += [ "flux_quantity", "SAP_FLUX", "PDCSAP_FLUX", "astropy_time", "hdu", ] for attr in dir(self): if not attr.startswith("_") and attr not in deprecated_properties: try: res = getattr(self, attr) except Exception: continue if callable(res): continue attrs[attr] = {"res": res} if isinstance(res, int): attrs[attr]["print"] = "{}".format(res) attrs[attr]["type"] = "int" elif isinstance(res, np.ndarray): attrs[attr]["print"] = "array {}".format(res.shape) attrs[attr]["type"] = "array" elif isinstance(res, list): attrs[attr]["print"] = "list length {}".format(len(res)) attrs[attr]["type"] = "list" elif isinstance(res, str): if res == "": attrs[attr]["print"] = "{}".format("None") else: attrs[attr]["print"] = "{}".format(res) attrs[attr]["type"] = "str" elif attr == "wcs": attrs[attr]["print"] = "astropy.wcs.wcs.WCS" attrs[attr]["type"] = "other" else: attrs[attr]["print"] = "{}".format(type(res)) attrs[attr]["type"] = "other" output = Table(names=["Attribute", "Description"], dtype=[object, object]) idx = 0 types = ["int", "str", "list", "array", "other"] for typ in types: for attr, dic in attrs.items(): if dic["type"] == typ: output.add_row([attr, dic["print"]]) idx += 1 output.pprint(max_lines=-1, max_width=-1)
[docs] def append(self, others, inplace=False): """Append one or more other `LightCurve` object(s) to this one. Parameters ---------- others : `LightCurve`, or list of `LightCurve` Light curve(s) to be appended to the current one. inplace : bool If True, change the current `LightCurve` instance in place instead of creating and returning a new one. Defaults to False. Returns ------- new_lc : `LightCurve` Light curve which has the other light curves appened to it. """ if inplace: raise ValueError( "the `inplace` parameter is no longer supported " "as of Lightkurve v2.0" ) if not hasattr(others, "__iter__"): others = (others,) # Re-use LightCurveCollection.stitch() to avoid code duplication from .collections import LightCurveCollection # avoid circular import return LightCurveCollection((self, *others)).stitch(corrector_func=None)
[docs] def flatten( self, window_length=101, polyorder=2, return_trend=False, break_tolerance=5, niters=3, sigma=3, mask=None, **kwargs, ): """Removes the low frequency trend using scipy's Savitzky-Golay filter. This method wraps `scipy.signal.savgol_filter`. Parameters ---------- window_length : int The length of the filter window (i.e. the number of coefficients). ``window_length`` must be a positive odd integer. polyorder : int The order of the polynomial used to fit the samples. ``polyorder`` must be less than window_length. return_trend : bool If `True`, the method will return a tuple of two elements (flattened_lc, trend_lc) where trend_lc is the removed trend. break_tolerance : int If there are large gaps in time, flatten will split the flux into several sub-lightcurves and apply `savgol_filter` to each individually. A gap is defined as a period in time larger than `break_tolerance` times the median gap. To disable this feature, set `break_tolerance` to None. niters : int Number of iterations to iteratively sigma clip and flatten. If more than one, will perform the flatten several times, removing outliers each time. sigma : int Number of sigma above which to remove outliers from the flatten mask : boolean array with length of self.time Boolean array to mask data with before flattening. Flux values where mask is True will not be used to flatten the data. An interpolated result will be provided for these points. Use this mask to remove data you want to preserve, e.g. transits. **kwargs : dict Dictionary of arguments to be passed to `scipy.signal.savgol_filter`. Returns ------- flatten_lc : `LightCurve` New light curve object with long-term trends removed. If ``return_trend`` is set to ``True``, this method will also return: trend_lc : `LightCurve` New light curve object containing the trend that was removed. """ if mask is None: mask = np.ones(len(self.time), dtype=bool) else: # Deep copy ensures we don't change the original. mask = deepcopy(~mask) # Add NaNs & outliers to the mask extra_mask = np.isfinite(self.flux) extra_mask &= np.nan_to_num(np.abs(self.flux - np.nanmedian(self.flux))) <= ( np.nanstd(self.flux) * sigma ) # In astropy>=5.0, extra_mask is a masked array if hasattr(extra_mask, 'mask'): mask &= extra_mask.filled(False) else: # support astropy<5.0 mask &= extra_mask for iter in np.arange(0, niters): if break_tolerance is None: break_tolerance = np.nan if polyorder >= window_length: polyorder = window_length - 1 log.warning( "polyorder must be smaller than window_length, " "using polyorder={}.".format(polyorder) ) # Split the lightcurve into segments by finding large gaps in time dt = self.time.value[mask][1:] - self.time.value[mask][0:-1] with warnings.catch_warnings(): # Ignore warnings due to NaNs warnings.simplefilter("ignore", RuntimeWarning) cut = np.where(dt > break_tolerance * np.nanmedian(dt))[0] + 1 low = np.append([0], cut) high = np.append(cut, len(self.time[mask])) # Then, apply the savgol_filter to each segment separately trend_signal = Quantity(np.zeros(len(self.time[mask])), unit=self.flux.unit) for l, h in zip(low, high): # Reduce `window_length` and `polyorder` for short segments; # this prevents `savgol_filter` from raising an exception # If the segment is too short, just take the median if np.any([window_length > (h - l), (h - l) < break_tolerance]): trend_signal[l:h] = np.nanmedian(self.flux[mask][l:h]) else: # Scipy outputs a warning here that is not useful, will be fixed in version 1.2 with warnings.catch_warnings(): warnings.simplefilter("ignore", FutureWarning) trsig = savgol_filter( x=self.flux.value[mask][l:h], window_length=window_length, polyorder=polyorder, **kwargs, ) trend_signal[l:h] = Quantity(trsig, trend_signal.unit) # Ignore outliers; note we add `1e-14` below to avoid detecting # outliers which are merely caused by numerical noise. mask1 = np.nan_to_num(np.abs(self.flux[mask] - trend_signal)) < ( np.nanstd(self.flux[mask] - trend_signal) * sigma + Quantity(1e-14, self.flux.unit) ) f = interp1d( self.time.value[mask][mask1], trend_signal[mask1], fill_value="extrapolate", ) trend_signal = Quantity(f(self.time.value), self.flux.unit) # In astropy>=5.0, mask1 is a masked array if hasattr(mask1, 'mask'): mask[mask] &= mask1.filled(False) else: # support astropy<5.0 mask[mask] &= mask1 flatten_lc = self.copy() with warnings.catch_warnings(): # ignore invalid division warnings warnings.simplefilter("ignore", RuntimeWarning) flatten_lc.flux = flatten_lc.flux / trend_signal flatten_lc.flux_err = flatten_lc.flux_err / trend_signal flatten_lc.meta["NORMALIZED"] = True if return_trend: trend_lc = self.copy() trend_lc.flux = trend_signal return flatten_lc, trend_lc return flatten_lc
[docs] @deprecated_renamed_argument( "transit_midpoint", "epoch_time", "2.0", warning_type=LightkurveDeprecationWarning, ) @deprecated_renamed_argument( "t0", "epoch_time", "2.0", warning_type=LightkurveDeprecationWarning ) def fold( self, period=None, epoch_time=None, epoch_phase=0, wrap_phase=None, normalize_phase=False, ): """Returns a `FoldedLightCurve` object folded on a period and epoch. This method is identical to AstroPy's `~astropy.timeseries.TimeSeries.fold()` method, except it returns a `FoldedLightCurve` object which offers convenient plotting methods. Parameters ---------- period : float `~astropy.units.Quantity` The period to use for folding. If a ``float`` is passed we'll assume it is in units of days. epoch_time : `~astropy.time.Time` The time to use as the reference epoch, at which the relative time offset / phase will be ``epoch_phase``. Defaults to the first time in the time series. epoch_phase : float or `~astropy.units.Quantity` Phase of ``epoch_time``. If ``normalize_phase`` is `True`, this should be a dimensionless value, while if ``normalize_phase`` is ``False``, this should be a `~astropy.units.Quantity` with time units. Defaults to 0. wrap_phase : float or `~astropy.units.Quantity` The value of the phase above which values are wrapped back by one period. If ``normalize_phase`` is `True`, this should be a dimensionless value, while if ``normalize_phase`` is ``False``, this should be a `~astropy.units.Quantity` with time units. Defaults to half the period, so that the resulting time series goes from ``-period / 2`` to ``period / 2`` (if ``normalize_phase`` is `False`) or -0.5 to 0.5 (if ``normalize_phase`` is `True`). normalize_phase : bool If `False` phase is returned as `~astropy.time.TimeDelta`, otherwise as a dimensionless `~astropy.units.Quantity`. Returns ------- folded_lightcurve : `FoldedLightCurve` The folded light curve object in which the ``time`` column holds the phase values. """ # Lightkurve v1.x assumed that `period` was given in days if no unit # was specified. We maintain this behavior for backwards-compatibility. if period is not None and not isinstance(period, Quantity): period *= u.day if epoch_time is not None and not isinstance(epoch_time, Time): epoch_time = Time( epoch_time, format=self.time.format, scale=self.time.scale ) if ( epoch_phase is not None and not isinstance(epoch_phase, Quantity) and not normalize_phase ): epoch_phase *= u.day if wrap_phase is not None and not isinstance(wrap_phase, Quantity): wrap_phase *= u.day # Warn if `epoch_time` appears to use the wrong format if epoch_time is not None and epoch_time.value > 2450000: if self.time.format == "bkjd": warnings.warn( "`epoch_time` appears to be given in JD, " "however the light curve time uses BKJD " "(i.e. JD - 2454833).", LightkurveWarning, ) elif self.time.format == "btjd": warnings.warn( "`epoch_time` appears to be given in JD, " "however the light curve time uses BTJD " "(i.e. JD - 2457000).", LightkurveWarning, ) ts = super().fold( period=period, epoch_time=epoch_time, epoch_phase=epoch_phase, wrap_phase=wrap_phase, normalize_phase=normalize_phase, ) # The folded time would pass the `TimeSeries` validation check if # `normalize_phase=True`, so creating a `FoldedLightCurve` object # requires the following three-step workaround: # 1. Give the folded light curve a valid time column again with ts._delay_required_column_checks(): folded_time = ts.time.copy() ts.remove_column("time") ts.add_column(self.time, name="time", index=0) # 2. Create the folded object lc = FoldedLightCurve(data=ts) # 3. Restore the folded time with lc._delay_required_column_checks(): lc.remove_column("time") lc.add_column(folded_time, name="time", index=0) # Add extra column and meta data specific to FoldedLightCurve lc.add_column( self.time.copy(), name="time_original", index=len(self._required_columns) ) lc.meta["PERIOD"] = period lc.meta["EPOCH_TIME"] = epoch_time lc.meta["EPOCH_PHASE"] = epoch_phase lc.meta["WRAP_PHASE"] = wrap_phase lc.meta["NORMALIZE_PHASE"] = normalize_phase lc.sort("time") return lc
[docs] def normalize(self, unit="unscaled"): """Returns a normalized version of the light curve. The normalized light curve is obtained by dividing the ``flux`` and ``flux_err`` object attributes by the median flux. Optionally, the result will be multiplied by 1e2 (if `unit='percent'`), 1e3 (`unit='ppt'`), or 1e6 (`unit='ppm'`). Parameters ---------- unit : 'unscaled', 'percent', 'ppt', 'ppm' The desired relative units of the normalized light curve; 'ppt' means 'parts per thousand', 'ppm' means 'parts per million'. Examples -------- >>> import lightkurve as lk >>> lc = lk.LightCurve(time=[1, 2, 3], flux=[25945.7, 25901.5, 25931.2], flux_err=[6.8, 4.6, 6.2]) >>> normalized_lc = lc.normalize() >>> normalized_lc.flux <Quantity [1.00055917, 0.99885466, 1. ]> >>> normalized_lc.flux_err <Quantity [0.00026223, 0.00017739, 0.00023909]> Returns ------- normalized_lightcurve : `LightCurve` A new light curve object in which ``flux`` and ``flux_err`` have been divided by the median flux. Warns ----- LightkurveWarning If the median flux is negative or within half a standard deviation from zero. """ validate_method(unit, ["unscaled", "percent", "ppt", "ppm"]) median_flux = np.nanmedian(self.flux) std_flux = np.nanstd(self.flux) # If the median flux is within half a standard deviation from zero, the # light curve is likely zero-centered and normalization makes no sense. if (median_flux == 0) or ( np.isfinite(std_flux) and (np.abs(median_flux) < 0.5 * std_flux) ): warnings.warn( "The light curve appears to be zero-centered " "(median={:.2e} +/- {:.2e}); `normalize()` will divide " "the light curve by a value close to zero, which is " "probably not what you want." "".format(median_flux, std_flux), LightkurveWarning, ) # If the median flux is negative, normalization will invert the light # curve and makes no sense. if median_flux < 0: warnings.warn( "The light curve has a negative median flux ({:.2e});" " `normalize()` will therefore divide by a negative " "number and invert the light curve, which is probably" "not what you want".format(median_flux), LightkurveWarning, ) # Create a new light curve instance and normalize its values lc = self.copy() lc.flux = lc.flux / median_flux lc.flux_err = lc.flux_err / median_flux if not lc.flux.unit: lc.flux *= u.dimensionless_unscaled if not lc.flux_err.unit: lc.flux_err *= u.dimensionless_unscaled # Set the desired relative (dimensionless) units if unit == "percent": lc.flux = lc.flux.to(u.percent) lc.flux_err = lc.flux_err.to(u.percent) elif unit in ("ppt", "ppm"): lc.flux = lc.flux.to(unit) lc.flux_err = lc.flux_err.to(unit) lc.meta["NORMALIZED"] = True return lc
[docs] def remove_nans(self, column: str = "flux"): """Removes cadences where ``column`` is a NaN. Parameters ---------- column : str Column to check for NaNs. Defaults to ``'flux'``. Returns ------- clean_lightcurve : `LightCurve` A new light curve object from which NaNs fluxes have been removed. Examples -------- >>> import lightkurve as lk >>> import numpy as np >>> lc = lk.LightCurve({'time': [1, 2, 3], 'flux': [1., np.nan, 1.]}) >>> lc.remove_nans() <LightCurve length=2> time flux flux_err <BLANKLINE> Time float64 float64 ---- ------- -------- 1.0 1.0 nan 3.0 1.0 nan """ return self[~np.isnan(self[column])] # This will return a sliced copy
[docs] def fill_gaps(self, method: str = "gaussian_noise"): r"""Fill in gaps in time. By default, the gaps will be filled with random white Gaussian noise distributed according to :math:`\mathcal{N} (\mu=\overline{\mathrm{flux}}, \sigma=\mathrm{CDPP})`. No other methods are supported at this time. Parameters ---------- method : string {'gaussian_noise'} Method to use for gap filling. Fills with Gaussian noise by default. Returns ------- filled_lightcurve : `LightCurve` A new light curve object in which all NaN values and gaps in time have been filled. """ lc = self.copy().remove_nans() # nlc = lc.copy() newdata = {} # Find missing time points # Most precise method, taking into account time variation due to orbit if hasattr(lc, "cadenceno"): dt = lc.time.value - np.median(np.diff(lc.time.value)) * lc.cadenceno.value ncad = np.arange(lc.cadenceno.value[0], lc.cadenceno.value[-1] + 1, 1) in_original = np.in1d(ncad, lc.cadenceno.value) ncad = ncad[~in_original] ndt = np.interp(ncad, lc.cadenceno.value, dt) ncad = np.append(ncad, lc.cadenceno.value) ndt = np.append(ndt, dt) ncad, ndt = ncad[np.argsort(ncad)], ndt[np.argsort(ncad)] ntime = ndt + np.median(np.diff(lc.time.value)) * ncad newdata["cadenceno"] = ncad else: # Less precise method dt = np.nanmedian(lc.time.value[1::] - lc.time.value[:-1:]) ntime = [lc.time.value[0]] for t in lc.time.value[1::]: prevtime = ntime[-1] while (t - prevtime) > 1.2 * dt: ntime.append(prevtime + dt) prevtime = ntime[-1] ntime.append(t) ntime = np.asarray(ntime, float) in_original = np.in1d(ntime, lc.time.value) # Fill in time points newdata["time"] = Time(ntime, format=lc.time.format, scale=lc.time.scale) f = np.zeros(len(ntime)) f[in_original] = np.copy(lc.flux) fe = np.zeros(len(ntime)) fe[in_original] = np.copy(lc.flux_err) # Temporary workaround for issue #1172. TODO: remove the `if`` statement # below once we adopt AstroPy >=5.0.3 as a minimum dependency. if hasattr(lc.flux_err, 'mask'): fe[~in_original] = np.interp(ntime[~in_original], lc.time.value, lc.flux_err.unmasked) else: fe[~in_original] = np.interp(ntime[~in_original], lc.time.value, lc.flux_err) if method == "gaussian_noise": try: std = lc.estimate_cdpp().to(lc.flux.unit).value except: std = np.nanstd(lc.flux.value) f[~in_original] = np.random.normal( np.nanmean(lc.flux.value), std, (~in_original).sum() ) else: raise NotImplementedError("No such method as {}".format(method)) newdata["flux"] = Quantity(f, lc.flux.unit) newdata["flux_err"] = Quantity(fe, lc.flux_err.unit) if hasattr(lc, "quality"): quality = np.zeros(len(ntime), dtype=lc.quality.dtype) quality[in_original] = np.copy(lc.quality) quality[~in_original] += 65536 newdata["quality"] = quality """ # TODO: add support for other columns for column in lc.columns: if column in ("time", "flux", "flux_err", "quality"): continue old_values = lc[column] new_values = np.empty(len(ntime), dtype=old_values.dtype) new_values[~in_original] = np.nan new_values[in_original] = np.copy(old_values) newdata[column] = new_values """ return LightCurve(data=newdata, meta=self.meta)
[docs] def remove_outliers( self, sigma=5.0, sigma_lower=None, sigma_upper=None, return_mask=False, **kwargs ): """Removes outlier data points using sigma-clipping. This method returns a new `LightCurve` object from which data points are removed if their flux values are greater or smaller than the median flux by at least ``sigma`` times the standard deviation. Sigma-clipping works by iterating over data points, each time rejecting values that are discrepant by more than a specified number of standard deviations from a center value. If the data contains invalid values (NaNs or infs), they are automatically masked before performing the sigma clipping. .. note:: This function is a convenience wrapper around `astropy.stats.sigma_clip()` and provides the same functionality. Any extra arguments passed to this method will be passed on to ``sigma_clip``. Parameters ---------- sigma : float The number of standard deviations to use for both the lower and upper clipping limit. These limits are overridden by ``sigma_lower`` and ``sigma_upper``, if input. Defaults to 5. sigma_lower : float or None The number of standard deviations to use as the lower bound for the clipping limit. Can be set to float('inf') in order to avoid clipping outliers below the median at all. If `None` then the value of ``sigma`` is used. Defaults to `None`. sigma_upper : float or None The number of standard deviations to use as the upper bound for the clipping limit. Can be set to float('inf') in order to avoid clipping outliers above the median at all. If `None` then the value of ``sigma`` is used. Defaults to `None`. return_mask : bool Whether or not to return a mask (i.e. a boolean array) indicating which data points were removed. Entries marked as `True` in the mask are considered outliers. This mask is not returned by default. **kwargs : dict Dictionary of arguments to be passed to `astropy.stats.sigma_clip`. Returns ------- clean_lc : `LightCurve` A new light curve object from which outlier data points have been removed. outlier_mask : NumPy array, optional Boolean array flagging which cadences were removed. Only returned if `return_mask=True`. Examples -------- This example generates a new light curve in which all points that are more than 1 standard deviation from the median are removed:: >>> lc = LightCurve(time=[1, 2, 3, 4, 5], flux=[1, 1000, 1, -1000, 1]) >>> lc_clean = lc.remove_outliers(sigma=1) >>> lc_clean.time <Time object: scale='tdb' format='jd' value=[1. 3. 5.]> >>> lc_clean.flux <Quantity [1., 1., 1.]> Instead of specifying `sigma`, you may specify separate `sigma_lower` and `sigma_upper` parameters to remove only outliers above or below the median. For example:: >>> lc = LightCurve(time=[1, 2, 3, 4, 5], flux=[1, 1000, 1, -1000, 1]) >>> lc_clean = lc.remove_outliers(sigma_lower=float('inf'), sigma_upper=1) >>> lc_clean.time <Time object: scale='tdb' format='jd' value=[1. 3. 4. 5.]> >>> lc_clean.flux <Quantity [ 1., 1., -1000., 1.]> Optionally, you may use the `return_mask` parameter to return a boolean array which flags the outliers identified by the method. For example:: >>> lc_clean, mask = lc.remove_outliers(sigma=1, return_mask=True) >>> mask array([False, True, False, True, False]) """ # The import time for `sigma_clip` is somehow very slow, so we use # a local import here. from astropy.stats.sigma_clipping import sigma_clip # astropy.stats.sigma_clip won't work with masked ndarrays so we convert to regular arrays flux = self.flux.copy() if isinstance(flux, Masked): flux = flux.filled(np.nan) # First, we create the outlier mask using AstroPy's sigma_clip function with warnings.catch_warnings(): # Ignore warnings due to NaNs or Infs warnings.simplefilter("ignore") flux = self.flux if isinstance(flux, Masked): # Workaround for https://github.com/astropy/astropy/issues/14360 # in passing MaskedQuantity to sigma_clip, by converting it to Quantity. # We explicitly fill masked values with `np.nan` here to ensure they are masked during sigma clipping. # To handle unlikely edge case, convert int to float to ensure filing `np.nan` work. # The conversion is acceptable because only the mask of the sigma_clip() result is used. if np.issubdtype(flux.dtype, np.int_): flux = flux.astype(float) flux = flux.filled(np.nan) outlier_mask = sigma_clip( data=flux, sigma=sigma, sigma_lower=sigma_lower, sigma_upper=sigma_upper, **kwargs, ).mask # Second, we return the masked light curve and optionally the mask itself if return_mask: return self.copy()[~outlier_mask], outlier_mask return self.copy()[~outlier_mask]
[docs] @deprecated_renamed_argument( "binsize", new_name=None, since="2.0", warning_type=LightkurveDeprecationWarning, alternative="time_bin_size", ) def bin( self, time_bin_size=None, time_bin_start=None, time_bin_end=None, n_bins=None, aggregate_func=None, bins=None, binsize=None, ): """Bins a lightcurve in equally-spaced bins in time. If the original light curve contains flux uncertainties (``flux_err``), the binned lightcurve will report the root-mean-square error. If no uncertainties are included, the binned curve will return the standard deviation of the data. Parameters ---------- time_bin_size : `~astropy.units.Quantity` or `~astropy.time.TimeDelta`, optional The time interval for the binned time series - this is either a scalar value (in which case all time bins will be assumed to have the same duration) or as an array of values (in which case each time bin can have a different duration). If this argument is provided, ``time_bin_end`` should not be provided. (Default: 0.5 days; default unit: days.) time_bin_start : `~astropy.time.Time` or iterable, optional The start time for the binned time series - this can be either given directly as a `~astropy.time.Time` array or as any iterable that initializes the `~astropy.time.Time` class. This can also be a scalar value if ``time_bin_size`` is provided. Defaults to the first time in the sampled time series. time_bin_end : `~astropy.time.Time` or iterable, optional The times of the end of each bin - this can be either given directly as a `~astropy.time.Time` array or as any iterable that initializes the `~astropy.time.Time` class. This can only be given if ``time_bin_start`` is an array of values. If ``time_bin_end`` is a scalar, time bins are assumed to be contiguous, such that the end of each bin is the start of the next one, and ``time_bin_end`` gives the end time for the last bin. If ``time_bin_end`` is an array, the time bins do not need to be contiguous. If this argument is provided, ``time_bin_size`` should not be provided. This option, like the iterable form of ``time_bin_start``, requires Astropy 5.0. n_bins : int, optional The number of bins to use. Defaults to the number needed to fit all the original points. Note that this will create this number of bins of length ``time_bin_size`` independent of the lightkurve length. aggregate_func : callable, optional The function to use for combining points in the same bin. Defaults to np.nanmean. bins : int, iterable or str, optional If an int, this gives the number of bins to divide the lightkurve into. In contrast to ``n_bins`` this adjusts the length of ``time_bin_size`` to accommodate the input time series length. If it is an iterable of ints, it specifies the indices of the bin edges. If a string, it must be one of 'blocks', 'knuth', 'scott' or 'freedman' defining a method of automatically determining an optimal bin size. See `~astropy.stats.histogram` for a description of each method. Note that 'blocks' is not a useful method for regularly sampled data. binsize : int In Lightkurve v1.x, the default behavior of `bin()` was to create bins which contained an equal number data points in each bin. This type of binning is discouraged because it usually makes more sense to create equally-sized bins in time duration, which is the new default behavior in Lightkurve v2.x. Nevertheless, this `binsize` parameter allows users to simulate the old behavior of Lightkurve v1.x. For ease of implementation, setting this parameter is identical to passing ``time_bin_size = lc.time[binsize] - time[0]``, which means that the bins are not guaranteed to contain an identical number of data points. Returns ------- binned_lc : `LightCurve` A new light curve which has been binned. """ kwargs = dict() if binsize is not None and bins is not None: raise ValueError("Only one of ``bins`` and ``binsize`` can be specified.") elif (binsize is not None or bins is not None) and ( time_bin_size is not None or n_bins is not None ): raise ValueError( "``bins`` or ``binsize`` conflicts with " "``n_bins`` or ``time_bin_size``." ) elif bins is not None: if (bins not in ('blocks', 'knuth', 'scott', 'freedman') and np.array(bins).dtype != np.int_): raise TypeError("``bins`` must have integer type.") elif (isinstance(bins, str) or np.size(bins) != 1) and not _HAS_VAR_BINS: raise ValueError("Sequence or method for ``bins`` requires Astropy 5.0.") if time_bin_start is None: time_bin_start = self.time[0] if not isinstance(time_bin_start, (Time, TimeDelta)): if isinstance(self.time, TimeDelta): time_bin_start = TimeDelta( time_bin_start, format=self.time.format, scale=self.time.scale ) else: time_bin_start = Time( time_bin_start, format=self.time.format, scale=self.time.scale ) # Backwards compatibility with Lightkurve v1.x if time_bin_size is None: if bins is not None: if np.size(bins) == 1 and _HAS_VAR_BINS: # This actually calculates equal-length bins just as the method below; # should it instead set equal-number bins with binsize=int(len(self) / bins)? # Get start times in mjd and convert back to original format bin_starts = calculate_bin_edges(self.time.mjd, bins=bins)[:-1] time_bin_start = Time(Time(bin_starts, format='mjd'), format=self.time.format) elif np.size(bins) == 1: warnings.warn( '"classic" `bins` require Astropy 5.0; will use constant lengths in time.', LightkurveWarning) # Odd memory error in np.searchsorted with pytest-memtest? if self.time[0] >= time_bin_start: i = len(self.time) else: i = len(self.time) - np.searchsorted(self.time, time_bin_start) time_bin_size = ((self.time[-1] - time_bin_start) * i / ((i - 1) * bins)).to(u.day) else: time_bin_start = self.time[bins[:-1]] kwargs['time_bin_end'] = self.time[bins[1:]] elif binsize is not None: if _HAS_VAR_BINS: time_bin_start = self.time[::binsize] else: warnings.warn( '`binsize` requires Astropy 5.0 to guarantee equal number of points; ' 'will use estimated time lengths for bins.', LightkurveWarning) if self.time[0] >= time_bin_start: i = 0 else: i = np.searchsorted(self.time, time_bin_start) time_bin_size = (self.time[i + binsize] - self.time[i]).to(u.day) else: time_bin_size = 0.5 * u.day elif not isinstance(time_bin_size, Quantity): time_bin_size *= u.day # Call AstroPy's aggregate_downsample with warnings.catch_warnings(): # ignore uninteresting empty slice warnings warnings.simplefilter("ignore", (RuntimeWarning, AstropyUserWarning)) ts = aggregate_downsample( self, time_bin_size=time_bin_size, n_bins=n_bins, time_bin_start=time_bin_start, aggregate_func=aggregate_func, **kwargs ) # If `flux_err` is populated, assume the errors combine as the root-mean-square if np.any(np.isfinite(self.flux_err)): rmse_func = ( lambda x: np.sqrt(np.nansum(x ** 2)) / len(np.atleast_1d(x)) if np.any(np.isfinite(x)) else np.nan ) ts_err = aggregate_downsample( self, time_bin_size=time_bin_size, n_bins=n_bins, time_bin_start=time_bin_start, aggregate_func=rmse_func, ) ts["flux_err"] = ts_err["flux_err"] # If `flux_err` is unavailable, populate `flux_err` as nanstd(flux) else: ts_err = aggregate_downsample( self, time_bin_size=time_bin_size, n_bins=n_bins, time_bin_start=time_bin_start, aggregate_func=np.nanstd, ) ts["flux_err"] = ts_err["flux"] # Prepare a LightCurve object by ensuring there is a time column ts._required_columns = [] ts.add_column(ts.time_bin_start + ts.time_bin_size / 2.0, name="time") # Ensure the required columns appear in the correct order for idx, colname in enumerate(self.__class__._required_columns): tmpcol = ts[colname] ts.remove_column(colname) ts.add_column(tmpcol, name=colname, index=idx) return self.__class__(ts, meta=self.meta)
[docs] def estimate_cdpp( self, transit_duration=13, savgol_window=101, savgol_polyorder=2, sigma=5.0 ) -> float: """Estimate the CDPP noise metric using the Savitzky-Golay (SG) method. A common estimate of the noise in a lightcurve is the scatter that remains after all long term trends have been removed. This is the idea behind the Combined Differential Photometric Precision (CDPP) metric. The official Kepler Pipeline computes this metric using a wavelet-based algorithm to calculate the signal-to-noise of the specific waveform of transits of various durations. In this implementation, we use the simpler "sgCDPP proxy algorithm" discussed by Gilliland et al (2011ApJS..197....6G) and Van Cleve et al (2016PASP..128g5002V). The steps of this algorithm are: 1. Remove low frequency signals using a Savitzky-Golay filter with window length `savgol_window` and polynomial order `savgol_polyorder`. 2. Remove outliers by rejecting data points which are separated from the mean by `sigma` times the standard deviation. 3. Compute the standard deviation of a running mean with a configurable window length equal to `transit_duration`. We use a running mean (as opposed to block averaging) to strongly attenuate the signal above 1/transit_duration whilst retaining the original frequency sampling. Block averaging would set the Nyquist limit to 1/transit_duration. Parameters ---------- transit_duration : int, optional The transit duration in units of number of cadences. This is the length of the window used to compute the running mean. The default is 13, which corresponds to a 6.5 hour transit in data sampled at 30-min cadence. savgol_window : int, optional Width of Savitsky-Golay filter in cadences (odd number). Default value 101 (2.0 days in Kepler Long Cadence mode). savgol_polyorder : int, optional Polynomial order of the Savitsky-Golay filter. The recommended value is 2. sigma : float, optional The number of standard deviations to use for clipping outliers. The default is 5. Returns ------- cdpp : float Savitzky-Golay CDPP noise metric in units parts-per-million (ppm). Notes ----- This implementation is adapted from the Matlab version used by Jeff van Cleve but lacks the normalization factor used there: svn+ssh://murzim/repo/so/trunk/Develop/jvc/common/compute_SG_noise.m """ if not isinstance(transit_duration, int): raise ValueError( "transit_duration must be an integer in units " "number of cadences, got {}.".format(transit_duration) ) detrended_lc = self.flatten( window_length=savgol_window, polyorder=savgol_polyorder ) cleaned_lc = detrended_lc.remove_outliers(sigma=sigma) with warnings.catch_warnings(): # ignore "already normalized" message warnings.filterwarnings("ignore", message=".*already.*") normalized_lc = cleaned_lc.normalize("ppm") mean = running_mean(data=normalized_lc.flux, window_size=transit_duration) return np.std(mean)
[docs] def query_solar_system_objects( self, cadence_mask="outliers", radius=None, sigma=3, location=None, cache=True, return_mask=False, show_progress=True, ): """Returns a list of asteroids or comets which affected the light curve. Light curves of stars or galaxies are frequently affected by solar system bodies (e.g. asteroids, comets, planets). These objects can move across a target's photometric aperture mask on time scales of hours to days. When they pass through a mask, they tend to cause a brief spike in the brightness of the target. They can also cause dips by moving through a local background aperture mask (if any is used). The artifical spikes and dips introduced by asteroids are frequently confused with stellar flares, planet transits, etc. This method helps to identify false signals injects by asteroids by providing a list of the solar system objects (name, brightness, time) that passed in the vicinity of the target during the span of the light curve. This method queries the `SkyBot API <http://vo.imcce.fr/webservices/skybot/>`_, which returns a list of asteroids/comets/planets given a location, time, and search cone. Notes ----- * This method will use the `ra` and `dec` properties of the `LightCurve` object to determine the position of the search cone. * The size of the search cone is 15 spacecraft pixels by default. You can change this by passing the `radius` parameter (unit: degrees). * By default, this method will only search points in time during which the light curve showed 3-sigma outliers in flux. You can override this behavior and search for specific times by passing `cadence_mask`. See examples for details. Parameters ---------- cadence_mask : str, or boolean array with length of self.time mask in time to select which frames or points should be searched for SSOs. Default "outliers" will search for SSOs at points that are `sigma` from the mean. "all" will search all cadences. Alternatively, pass a boolean array with values of "True" for times to search for SSOs. radius : optional, float Radius in degrees to search for bodies. If None, will search for SSOs within 15 pixels. sigma : optional, float If `cadence_mask` is set to `"outlier"`, `sigma` will be used to identify outliers. location : optional, str Spacecraft location. Options include `'kepler'` and `'tess'`. Default: `self.mission` cache : optional, bool If True will cache the search result in the astropy cache. Set to False to request the search again. return_mask: optional, bool If True will return a boolean mask in time alongside the result show_progress: optional, bool If True will display a progress bar during the download Returns ------- result : `pandas.DataFrame` DataFrame object which lists the Solar System objects in frames that were identified to contain SSOs. Returns `None` if no objects were found. Examples -------- Find if there are SSOs affecting the lightcurve for the given time frame: >>> df_sso = lc.query_solar_system_objects(cadence_mask=(lc.time.value >= 2014.1) & (lc.time.value <= 2014.9)) # doctest: +SKIP Find if there are SSOs affecting the lightcurve for all times, but it will be much slower: >>> df_sso = lc.query_solar_system_objects(cadence_mask='all') # doctest: +SKIP """ for attr in ["ra", "dec"]: if not hasattr(self, "{}".format(attr)): raise ValueError("Input does not have a `{}` attribute.".format(attr)) # Validate `cadence_mask` if isinstance(cadence_mask, str): if cadence_mask == "outliers": cadence_mask = self.remove_outliers(sigma=sigma, return_mask=True)[1] elif cadence_mask == "all": cadence_mask = np.ones(len(self.time)).astype(bool) else: raise ValueError("invalid `cadence_mask` string argument") elif isinstance(cadence_mask, collections.abc.Sequence): cadence_mask = np.array(cadence_mask) elif isinstance(cadence_mask, (bool)): # for boundary case of a single element tuple, e.g., (True) cadence_mask = np.array([cadence_mask]) elif not isinstance(cadence_mask, np.ndarray): raise ValueError("the `cadence_mask` argument is missing or invalid") # Avoid searching times with NaN flux; this is necessary because e.g. # `remove_outliers` includes NaNs in its mask. if hasattr(self.flux, 'mask'): # Temporary workaround for issue #1172. TODO: remove this `if`` statement # once we adopt AstroPy >=5.0.3 as a minimum dependency cadence_mask &= ~np.isnan(self.flux.unmasked) else: cadence_mask &= ~np.isnan(self.flux) # Validate `location` if location is None: if hasattr(self, "mission") and self.mission: location = self.mission.lower() else: raise ValueError("you must pass a value for `location`.") # Validate `radius` if radius is None: # 15 pixels has been chosen as a reasonable default. # Comets have long tails which have tripped up users. if (location == "kepler") | (location == "k2"): radius = (4 * 15) * u.arcsecond.to(u.deg) elif location == "tess": radius = (21 * 15) * u.arcsecond.to(u.deg) else: radius = 15 * u.arcsecond.to(u.deg) res = _query_solar_system_objects( ra=self.ra, dec=self.dec, times=self.time.jd[cadence_mask], location=location, radius=radius, cache=cache, show_progress=show_progress, ) if return_mask: return res, np.in1d(self.time.jd, res.epoch) return res
def _create_plot( self, method="plot", column="flux", ax=None, normalize=False, xlabel=None, ylabel=None, title="", style="lightkurve", show_colorbar=True, colorbar_label="", offset=None, clip_outliers=False, **kwargs, ) -> matplotlib.axes.Axes: """Implements `plot()`, `scatter()`, and `errorbar()` to avoid code duplication. Parameters ---------- method : str One of 'plot', 'scatter', or 'errorbar'. column : str Name of data column to plot. Default `flux`. ax : `~matplotlib.axes.Axes` A matplotlib axes object to plot into. If no axes is provided, a new one will be generated. normalize : bool Normalize the lightcurve before plotting? xlabel : str X axis label. ylabel : str Y axis label. title : str Title shown at the top using matplotlib `set_title`. style : str Path or URL to a matplotlib style file, or name of one of matplotlib's built-in stylesheets (e.g. 'ggplot'). Lightkurve's custom stylesheet is used by default. show_colorbar : boolean Show the colorbar if colors are given using the `c` argument? colorbar_label : str Label to show next to the colorbar (if `c` is given). offset : float Offset value to apply to the Y axis values before plotting. Use this to avoid light curves from overlapping on the same plot. By default, no offset is applied. clip_outliers : bool If ``True``, clip the y axis limit to the 95%-percentile range. kwargs : dict Dictionary of arguments to be passed to Matplotlib's `plot`, `scatter`, or `errorbar` methods. Returns ------- ax : `~matplotlib.axes.Axes` The matplotlib axes object. """ # Configure the default style if style is None or style == "lightkurve": style = MPLSTYLE # Default xlabel if xlabel is None: if not hasattr(self.time, "format"): xlabel = "Phase" elif self.time.format == "bkjd": xlabel = "Time - 2454833 [BKJD days]" elif self.time.format == "btjd": xlabel = "Time - 2457000 [BTJD days]" elif self.time.format == "jd": xlabel = "Time [JD]" else: xlabel = "Time" # Default ylabel if ylabel is None: if "flux" == column: ylabel = "Flux" else: ylabel = f"{column}" if normalize or (column == "flux" and self.meta.get("NORMALIZED")): ylabel = "Normalized " + ylabel elif (self[column].unit) and (self[column].unit.to_string() != ""): ylabel += f" [{self[column].unit.to_string('latex_inline')}]" # Default legend label if "label" not in kwargs: kwargs["label"] = self.meta.get("LABEL") # Workaround for AstroPy v5.0.0 issue #12481: the 'c' argument # in matplotlib's scatter does not work with masked quantities. if "c" in kwargs and hasattr(kwargs["c"], 'mask'): kwargs["c"] = kwargs["c"].unmasked flux = self[column] try: flux_err = self[f"{column}_err"] except KeyError: flux_err = np.full(len(flux), np.nan) # Second workaround for AstroPy v5.0.0 issue #12481: # matplotlib does not work well with `MaskedNDArray` arrays. if hasattr(flux, 'mask'): flux = flux.filled(np.nan) if hasattr(flux_err, 'mask'): flux_err = flux_err.filled(np.nan) # Normalize the data if requested if normalize: # ignore "light curve is already normalized" message because # the user explicitely asked for normalization here with warnings.catch_warnings(): warnings.filterwarnings("ignore", message=".*already.*") if column == "flux": lc_normed = self.normalize() else: # Code below is a temporary hack because `normalize()` # does not have a `column` argument yet lc_tmp = self.copy() lc_tmp["flux"] = flux lc_tmp["flux_err"] = flux_err lc_normed = lc_tmp.normalize() flux, flux_err = lc_normed.flux, lc_normed.flux_err # Apply offset if requested if offset: flux = flux.copy() + offset * flux.unit # Make the plot with plt.style.context(style): if ax is None: fig, ax = plt.subplots(1) if method == "scatter": sc = ax.scatter(self.time.value, flux, **kwargs) # Colorbars should only be plotted if the user specifies, and there is # a color specified that is not a string (e.g. 'C1') and is iterable. if ( show_colorbar and ("c" in kwargs) and (not isinstance(kwargs["c"], str)) and hasattr(kwargs["c"], "__iter__") ): cbar = plt.colorbar(sc, ax=ax) cbar.set_label(colorbar_label) cbar.ax.yaxis.set_tick_params(tick1On=False, tick2On=False) cbar.ax.minorticks_off() elif method == "errorbar": if np.any(~np.isnan(flux_err)): ax.errorbar( x=self.time.value, y=flux.value, yerr=flux_err.value, **kwargs ) else: log.warning(f"Column `{column}` has no associated errors.") else: ax.plot(self.time.value, flux.value, **kwargs) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) # Show the legend if labels were set legend_labels = ax.get_legend_handles_labels() if np.sum([len(a) for a in legend_labels]) != 0: ax.legend(loc="best") if clip_outliers and len(flux) > 0: ymin, ymax = np.percentile(flux.value, [2.5, 97.5]) margin = 0.05 * (ymax - ymin) ax.set_ylim(ymin - margin, ymax + margin) return ax
[docs] def plot(self, **kwargs) -> matplotlib.axes.Axes: """Plot the light curve using Matplotlib's `~matplotlib.pyplot.plot` method. Parameters ---------- column : str Name of data column to plot. Default `flux`. ax : `~matplotlib.axes.Axes` A matplotlib axes object to plot into. If no axes is provided, a new one will be generated. normalize : bool Normalize the lightcurve before plotting? xlabel : str X axis label. ylabel : str Y axis label. title : str Title shown at the top using matplotlib `set_title`. style : str Path or URL to a matplotlib style file, or name of one of matplotlib's built-in stylesheets (e.g. 'ggplot'). Lightkurve's custom stylesheet is used by default. show_colorbar : boolean Show the colorbar if colors are given using the `c` argument? colorbar_label : str Label to show next to the colorbar (if `c` is given). offset : float Offset value to apply to the Y axis values before plotting. Use this to avoid light curves from overlapping on the same plot. By default, no offset is applied. kwargs : dict Dictionary of arguments to be passed to `matplotlib.pyplot.plot`. Returns ------- ax : `~matplotlib.axes.Axes` The matplotlib axes object. """ return self._create_plot(method="plot", **kwargs)
[docs] def scatter( self, colorbar_label="", show_colorbar=True, **kwargs ) -> matplotlib.axes.Axes: """Plots the light curve using Matplotlib's `~matplotlib.pyplot.scatter` method. Parameters ---------- column : str Name of data column to plot. Default `flux`. ax : `~matplotlib.axes.Axes` A matplotlib axes object to plot into. If no axes is provided, a new one will be generated. normalize : bool Normalize the lightcurve before plotting? xlabel : str X axis label. ylabel : str Y axis label. title : str Title shown at the top using matplotlib `set_title`. style : str Path or URL to a matplotlib style file, or name of one of matplotlib's built-in stylesheets (e.g. 'ggplot'). Lightkurve's custom stylesheet is used by default. show_colorbar : boolean Show the colorbar if colors are given using the `c` argument? colorbar_label : str Label to show next to the colorbar (if `c` is given). offset : float Offset value to apply to the Y axis values before plotting. Use this to avoid light curves from overlapping on the same plot. By default, no offset is applied. kwargs : dict Dictionary of arguments to be passed to `matplotlib.pyplot.scatter`. Returns ------- ax : `~matplotlib.axes.Axes` The matplotlib axes object. """ return self._create_plot( method="scatter", colorbar_label=colorbar_label, show_colorbar=show_colorbar, **kwargs, )
[docs] def errorbar(self, linestyle="", **kwargs) -> matplotlib.axes.Axes: """Plots the light curve using Matplotlib's `~matplotlib.pyplot.errorbar` method. Parameters ---------- linestyle : str Connect the error bars using a line? column : str Name of data column to plot. Default `flux`. ax : `~matplotlib.axes.Axes` A matplotlib axes object to plot into. If no axes is provided, a new one will be generated. normalize : bool Normalize the lightcurve before plotting? xlabel : str X axis label. ylabel : str Y axis label. title : str Title shown at the top using matplotlib `set_title`. style : str Path or URL to a matplotlib style file, or name of one of matplotlib's built-in stylesheets (e.g. 'ggplot'). Lightkurve's custom stylesheet is used by default. show_colorbar : boolean Show the colorbar if colors are given using the `c` argument? colorbar_label : str Label to show next to the colorbar (if `c` is given). offset : float Offset value to apply to the Y axis values before plotting. Use this to avoid light curves from overlapping on the same plot. By default, no offset is applied. kwargs : dict Dictionary of arguments to be passed to `matplotlib.pyplot.errorbar`. Returns ------- ax : `~matplotlib.axes.Axes` The matplotlib axes object. """ if "ls" not in kwargs: kwargs["linestyle"] = linestyle return self._create_plot(method="errorbar", **kwargs)
[docs] def interact_bls( self, notebook_url=None, minimum_period=None, maximum_period=None, resolution=2000, ): """Display an interactive Jupyter Notebook widget to find planets. The Box Least Squares (BLS) periodogram is a statistical tool used for detecting transiting exoplanets and eclipsing binaries in light curves. This method will display a Jupyter Notebook Widget which enables the BLS algorithm to be used interactively. Behind the scenes, the widget uses the AstroPy implementation of BLS [1]_. This feature only works inside an active Jupyter Notebook. It requires Bokeh v1.0 (or later). An error message will be shown if these dependencies are not available. Parameters ---------- notebook_url: str Location of the Jupyter notebook page (default: "localhost:8888") When showing Bokeh applications, the Bokeh server must be explicitly configured to allow connections originating from different URLs. This parameter defaults to the standard notebook host and port. If you are running on a different location, you will need to supply this value for the application to display properly. If no protocol is supplied in the URL, e.g. if it is of the form "localhost:8888", then "http" will be used. For use with JupyterHub, set the environment variable LK_JUPYTERHUB_EXTERNAL_URL to the public hostname of your JupyterHub and notebook_url will be defined appropriately automatically. minimum_period : float or None Minimum period to assess the BLS to. If None, default value of 0.3 days will be used. maximum_period : float or None Maximum period to evaluate the BLS to. If None, the time coverage of the lightcurve / 2 will be used. resolution : int Number of points to use in the BLS panel. Lower this value for faster but less accurate performance. You can also vary this value using the widget's Resolution Slider. Examples -------- Load the light curve for Kepler-10, remove long-term trends, and display the BLS tool as follows: >>> import lightkurve as lk >>> lc = lk.search_lightcurve('kepler-10', quarter=3).download() # doctest: +SKIP >>> lc = lc.normalize().flatten() # doctest: +SKIP >>> lc.interact_bls() # doctest: +SKIP References ---------- .. [1] https://docs.astropy.org/en/stable/timeseries/bls.html """ from .interact_bls import show_interact_widget notebook_url = finalize_notebook_url(notebook_url) return show_interact_widget( self, notebook_url=notebook_url, minimum_period=minimum_period, maximum_period=maximum_period, resolution=resolution, )
[docs] def to_table(self) -> Table: return Table(self)
@deprecated( "2.0", message="`to_timeseries()` has been deprecated. `LightCurve` is a " "sub-class of Astropy TimeSeries as of Lightkurve v2.0 " "and no longer needs to be converted.", warning_type=LightkurveDeprecationWarning, ) def to_timeseries(self): return self @staticmethod def from_timeseries(ts): """Creates a new `LightCurve` from an AstroPy `~astropy.timeseries.TimeSeries` object. Parameters ---------- ts : `~astropy.timeseries.TimeSeries` The AstroPy TimeSeries object. The object must contain columns named 'time', 'flux', and 'flux_err'. """ return LightCurve( time=ts["time"].value, flux=ts["flux"], flux_err=ts["flux_err"] ) def to_stingray(self): """Returns a `stingray.Lightcurve` object. This feature requires `Stingray <https://stingraysoftware.github.io/>`_ to be installed (e.g. ``pip install stingray``). An `ImportError` will be raised if this package is not available. Returns ------- lightcurve : `stingray.Lightcurve` An stingray Lightcurve object. """ try: from stingray import Lightcurve as StingrayLightcurve except ImportError: raise ImportError( "You need to install Stingray to use " "the LightCurve.to_stringray() method." ) return StingrayLightcurve( time=self.time.value, counts=self.flux, err=self.flux_err, input_counts=False, ) @staticmethod def from_stingray(lc): """Create a new `LightCurve` from a `stingray.Lightcurve`. Parameters ---------- lc : `stingray.Lightcurve` A stingray Lightcurve object. """ return LightCurve(time=lc.time, flux=lc.counts, flux_err=lc.counts_err)
[docs] def to_csv(self, path_or_buf=None, **kwargs): """Writes the light curve to a CSV file. This method will convert the light curve into the Comma-Separated Values (CSV) text format. By default this method will return the result as a string, but you can also write the string directly to disk by providing a file name or handle via the `path_or_buf` parameter. Parameters ---------- path_or_buf : string or file handle File path or object. By default, the result is returned as a string. **kwargs : dict Dictionary of arguments to be passed to `astropy`'s `~astropy.timeseries.TimeSeries.write`. Returns ------- csv : str or None Returns a csv-formatted string if ``path_or_buf=None``. Returns `None` otherwise. """ use_stringio = False if path_or_buf is None: use_stringio = True from io import StringIO path_or_buf = StringIO() result = self.write(path_or_buf, format="ascii.csv", **kwargs) if use_stringio: return path_or_buf.getvalue() return result
[docs] def to_pandas(self, **kwargs): """Converts the light curve to a Pandas `~pandas.DataFrame` object. The data frame will be indexed by `time` using values corresponding to the light curve's time format. This is different from the default behavior of `astropy`'s `~astropy.timeseries.TimeSeries.to_pandas`, which converts time values into ISO timestamps. Returns ------- dataframe : `pandas.DataFrame` A data frame indexed by `time`. """ df = super().to_pandas(**kwargs) # Default AstroPy behavior is to change the time column into ``np.datetime64`` # We override it here because it confuses Kepler/TESS users who are used # to working in BTJD and BKJD rather than ISO timestamps. df.index = self.time.value df.index.name = "time" return df
[docs] def to_excel(self, path_or_buf, **kwargs) -> None: """Shorthand for `to_pandas().to_excel()`. Parameters ---------- path_or_buf : string or file handle File path or object. **kwargs : dict Dictionary of arguments to be passed to `to_pandas().to_excel(**kwargs)`. """ try: import openpyxl # optional dependency except ModuleNotFoundError: raise ModuleNotFoundError( "You need to install `openpyxl` to use this feature, e.g. use `pip install openpyxl`." ) self.to_pandas().to_excel(path_or_buf, **kwargs)
[docs] def to_periodogram(self, method="lombscargle", **kwargs): """Converts the light curve to a `~lightkurve.periodogram.Periodogram` power spectrum object. This method will call either `LombScarglePeriodogram.from_lightcurve() <lightkurve.periodogram.LombScarglePeriodogram.from_lightcurve>` or `BoxLeastSquaresPeriodogram.from_lightcurve() <lightkurve.periodogram.BoxLeastSquaresPeriodogram.from_lightcurve>`, which in turn wrap `astropy`'s `~astropy.timeseries.LombScargle` and `~astropy.timeseries.BoxLeastSquares`. Optional keywords accepted if ``method='lombscargle'`` are: ``minimum_frequency``, ``maximum_frequency``, ``mininum_period``, ``maximum_period``, ``frequency``, ``period``, ``nterms``, ``nyquist_factor``, ``oversample_factor``, ``freq_unit``, ``normalization``, ``ls_method``. Optional keywords accepted if ``method='bls'`` are ``minimum_period``, ``maximum_period``, ``period``, ``frequency_factor``, ``duration``. Parameters ---------- method : {'lombscargle', 'boxleastsquares', 'ls', 'bls'} Use the Lomb Scargle or Box Least Squares (BLS) method to extract the power spectrum. Defaults to ``'lombscargle'``. ``'ls'`` and ``'bls'`` are shorthands for ``'lombscargle'`` and ``'boxleastsquares'``. kwargs : dict Keyword arguments passed to either `LombScarglePeriodogram <lightkurve.periodogram.LombScarglePeriodogram.from_lightcurve>` or `BoxLeastSquaresPeriodogram <lightkurve.periodogram.BoxLeastSquaresPeriodogram.from_lightcurve>`. Returns ------- Periodogram : `~lightkurve.periodogram.Periodogram` object The power spectrum object extracted from the light curve. """ supported_methods = ["ls", "bls", "lombscargle", "boxleastsquares"] method = validate_method(method.replace(" ", ""), supported_methods) if method in ["bls", "boxleastsquares"]: from .periodogram import BoxLeastSquaresPeriodogram return BoxLeastSquaresPeriodogram.from_lightcurve(lc=self, **kwargs) else: from .periodogram import LombScarglePeriodogram return LombScarglePeriodogram.from_lightcurve(lc=self, **kwargs)
[docs] def to_seismology(self, **kwargs): """Returns a `~lightkurve.seismology.Seismology` object for estimating quick-look asteroseismic quantities. All `**kwargs` will be passed to the `to_periodogram()` method. Returns ------- seismology : `~lightkurve.seismology.Seismology` object Object which can be used to estimate quick-look asteroseismic quantities. """ from .seismology import Seismology return Seismology.from_lightcurve(self, **kwargs)
[docs] def to_fits( self, path=None, overwrite=False, flux_column_name="FLUX", **extra_data ): """Converts the light curve to a FITS file in the Kepler/TESS file format. The FITS file will be returned as a `~astropy.io.fits.HDUList` object. If a `path` is specified then the file will also be written to disk. Parameters ---------- path : str or None Location where the FITS file will be written, which is optional. overwrite : bool Whether or not to overwrite the file, if `path` is set. flux_column_name : str The column name in the FITS file where the light curve flux data should be stored. Typical values are `FLUX` or `SAP_FLUX`. extra_data : dict Extra keywords or columns to include in the FITS file. Arguments of type str, int, float, or bool will be stored as keywords in the primary header. Arguments of type np.array or list will be stored as columns in the first extension. Returns ------- hdu : `~astropy.io.fits.HDUList` Returns an `~astropy.io.fits.HDUList` object. """ typedir = { int: "J", str: "A", float: "D", bool: "L", np.int32: "J", np.int32: "K", np.float32: "E", np.float64: "D", } def _header_template(extension): """Returns a template `fits.Header` object for a given extension.""" template_fn = os.path.join( PACKAGEDIR, "data", "lc-ext{}-header.txt".format(extension) ) return fits.Header.fromtextfile(template_fn) def _make_primary_hdu(extra_data=None): """Returns the primary extension (#0).""" if extra_data is None: extra_data = {} hdu = fits.PrimaryHDU() # Copy the default keywords from a template file from the MAST archive tmpl = _header_template(0) for kw in tmpl: hdu.header[kw] = (tmpl[kw], tmpl.comments[kw]) # Override the defaults where necessary from . import __version__ default = { "ORIGIN": "Unofficial data product", "DATE": datetime.datetime.now().strftime("%Y-%m-%d"), "CREATOR": "lightkurve.LightCurve.to_fits()", "PROCVER": str(__version__), } for kw in default: hdu.header["{}".format(kw).upper()] = default[kw] if default[kw] is None: log.warning("Value for {} is None.".format(kw)) for kw in extra_data: if isinstance(extra_data[kw], (str, float, int, bool, type(None))): hdu.header["{}".format(kw).upper()] = extra_data[kw] if extra_data[kw] is None: log.warning("Value for {} is None.".format(kw)) return hdu def _make_lightcurve_extension(extra_data=None): """Create the 'LIGHTCURVE' extension (i.e. extension #1).""" # Turn the data arrays into fits columns and initialize the HDU if extra_data is None: extra_data = {} cols = [] if ~np.asarray(["TIME" in k.upper() for k in extra_data.keys()]).any(): cols.append( fits.Column( name="TIME", format="D", unit=self.time.format, array=self.time.value, ) ) if ~np.asarray( [flux_column_name in k.upper() for k in extra_data.keys()] ).any(): cols.append( fits.Column( name=flux_column_name, format="E", unit=self.flux.unit.to_string(), array=self.flux, ) ) if hasattr(self,'flux_err'): if ~(flux_column_name.upper() + "_ERR" in extra_data.keys()): cols.append( fits.Column( name=flux_column_name.upper() + "_ERR", format="E", unit=self.flux_err.unit.to_string(), array=self.flux_err, ) ) if hasattr(self,'cadenceno'): if ~np.asarray( ["CADENCENO" in k.upper() for k in extra_data.keys()] ).any(): cols.append( fits.Column(name="CADENCENO", format="J", array=self.cadenceno) ) for kw in extra_data: if isinstance(extra_data[kw], (np.ndarray, list)): cols.append( fits.Column( name="{}".format(kw).upper(), format=typedir[extra_data[kw].dtype.type], array=extra_data[kw], ) ) if "SAP_QUALITY" not in extra_data: cols.append( fits.Column( name="SAP_QUALITY", format="J", array=np.zeros(len(self.flux)) ) ) coldefs = fits.ColDefs(cols) hdu = fits.BinTableHDU.from_columns(coldefs) hdu.header["EXTNAME"] = "LIGHTCURVE" return hdu def _hdulist(**extra_data): """Returns an astropy.io.fits.HDUList object.""" list_out = fits.HDUList( [ _make_primary_hdu(extra_data=extra_data), _make_lightcurve_extension(extra_data=extra_data), ] ) return list_out hdu = _hdulist(**extra_data) if path is not None: hdu.writeto(path, overwrite=overwrite, checksum=True) return hdu
[docs] def to_corrector(self, method="sff", **kwargs): """Returns a corrector object to remove instrument systematics. Parameters ---------- methods : string Currently, "sff" and "cbv" are supported. This will return a `~correctors.SFFCorrector` and `~correctors.CBVCorrector` class instance respectively. **kwargs : dict Extra keyword arguments to be passed to the corrector class. Returns ------- correcter : `~correctors.corrector.Corrector` Instance of a Corrector class, which typically provides `~correctors.corrector.Corrector.correct()` and `~correctors.corrector.Corrector.diagnose()` methods. """ if method == "pld": raise ValueError( "The 'pld' method can only be used on " "`TargetPixelFile` objects, not `LightCurve` objects." ) method = validate_method(method, supported_methods=["sff", "cbv"]) if method == "sff": from .correctors import SFFCorrector return SFFCorrector(self, **kwargs) elif method == "cbv": from .correctors import CBVCorrector return CBVCorrector(self, **kwargs)
[docs] @deprecated_renamed_argument( "t0", "epoch_time", "2.0", warning_type=LightkurveDeprecationWarning ) def plot_river( self, period, epoch_time=None, ax=None, bin_points=1, minimum_phase=-0.5, maximum_phase=0.5, method="mean", **kwargs, ) -> matplotlib.axes.Axes: """Plot the light curve as a river plot. A river plot uses colors to represent the light curve values in chronological order, relative to the period of an interesting signal. Each row in the plot represents a full period cycle, and each column represents a fixed phase. This type of plot is often used to visualize Transit Timing Variations (TTVs) in the light curves of exoplanets, but it can be used to visualize periodic signals of any origin. All extra keywords supplied are passed on to Matplotlib's `~matplotlib.pyplot.pcolormesh` function. Parameters ---------- ax : `~matplotlib.axes.Axes` The matplotlib axes object. period: float Period at which to fold the light curve epoch_time : float Phase mid point for plotting. Defaults to the first time value. bin_points : int How many points should be in each bin. minimum_phase : float The minimum phase to plot. maximum_phase : float The maximum phase to plot. method : str The river method. Choose from `'mean'` or `'median'` or `'sigma'`. If `'mean'` or `'median'`, the plot will display the average value in each bin. If `'sigma'`, the plot will display the average in the bin divided by the error in each bin, in order to show the data in terms of standard deviation. kwargs : dict Dictionary of arguments to be passed on to Matplotlib's `~matplotlib.pyplot.pcolormesh` function. Returns ------- ax : `~matplotlib.axes.Axes` The matplotlib axes object. """ if hasattr(self, "time_original"): # folded light curve time = self.time_original else: time = self.time # epoch_time defaults to the first time value if epoch_time is None: epoch_time = time[0] # Lightkurve v1.x assumed that `period` was given in days if no unit # was specified. We maintain this behavior for backwards-compatibility. if period is not None and not isinstance(period, Quantity): period *= u.day if epoch_time is not None and not isinstance(epoch_time, (Time, Quantity)): epoch_time = Time(epoch_time, format=time.format, scale=time.scale) method = validate_method(method, supported_methods=["mean", "median", "sigma"]) if (bin_points == 1) and (method in ["mean", "median"]): bin_func = lambda y, e: (y[0], e[0]) elif (bin_points == 1) and (method in ["sigma"]): bin_func = lambda y, e: ((y[0] - 1) / e[0], np.nan) elif method == "mean": bin_func = lambda y, e: (np.nanmean(y), np.nansum(e ** 2) ** 0.5 / len(e)) elif method == "median": bin_func = lambda y, e: (np.nanmedian(y), np.nansum(e ** 2) ** 0.5 / len(e)) elif method == "sigma": bin_func = lambda y, e: ( (np.nanmean(y) - 1) / (np.nansum(e ** 2) ** 0.5 / len(e)), np.nan, ) s = np.argsort(time.value) x, y, e = time.value[s], self.flux[s], self.flux_err[s] med = np.nanmedian(self.flux) e /= med y /= med # Here `ph` is the phase of each time point x # cyc is the number of cycles that have occured at each time point x # since the phase 0 before x[0] n = int( period.value / np.nanmedian(np.diff(x)) * (maximum_phase - minimum_phase) / bin_points ) if n == 1: bin_points = int(maximum_phase - minimum_phase) / ( 2 / int(period.value / np.nanmedian(np.diff(x))) ) warnings.warn( "`bin_points` is too high to plot a phase curve, resetting to {}".format( bin_points ), LightkurveWarning, ) n = 2 ph = x / period.value % 1 cyc = np.asarray((x - x % period.value) / period.value, int) cyc -= np.min(cyc) phase = (epoch_time.value % period.value) / period.value ph = ((x - (phase * period.value)) / period.value) % 1 cyc = np.asarray( (x - ((x - phase * period.value) % period.value)) / period.value, int ) cyc -= np.min(cyc) ph[ph > 0.5] -= 1 ar = np.empty((n, np.max(cyc) + 1)) ar[:] = np.nan bs = np.linspace(minimum_phase, maximum_phase, n + 1) cycs = np.arange(0, np.max(cyc) + 2) ph_masks = [(ph > bs[jdx]) & (ph <= bs[jdx + 1]) for jdx in range(n)] qual_mask = np.isfinite(y) for cyc1 in np.unique(cyc): cyc_mask = cyc == cyc1 if not np.any(cyc_mask): continue for jdx, ph_mask in enumerate(ph_masks): if not np.any(cyc_mask & ph_mask & qual_mask): ar[jdx, cyc1] = np.nan else: ar[jdx, cyc1] = bin_func( y[cyc_mask & ph_mask], e[cyc_mask & ph_mask] )[0] # If the method is average we need to denormalize the plot if method in ["mean", "median"]: median = np.nanmedian(self.flux.value) if hasattr(median, 'mask'): median = median.filled(np.nan) ar *= median d = np.max( [ np.abs(np.nanmedian(ar) - np.nanpercentile(ar, 5)), np.abs(np.nanmedian(ar) - np.nanpercentile(ar, 95)), ] ) vmin = kwargs.pop("vmin", np.nanmedian(ar) - d) vmax = kwargs.pop("vmax", np.nanmedian(ar) + d) if method in ["mean", "median"]: cmap = kwargs.pop("cmap", "viridis") elif method == "sigma": cmap = kwargs.pop("cmap", "coolwarm") with plt.style.context(MPLSTYLE): if ax is None: _, ax = plt.subplots(figsize=(12, cyc.max() * 0.1)) im = ax.pcolormesh( bs, cycs, ar.T, vmin=vmin, vmax=vmax, cmap=cmap, **kwargs ) cbar = plt.colorbar(im, ax=ax) if method in ["mean", "median"]: unit = "[Normalized Flux]" if self.flux.unit is not None: if self.flux.unit != u.dimensionless_unscaled: unit = "[{}]".format(self.flux.unit.to_string("latex")) if bin_points == 1: cbar.set_label("Flux {}".format(unit)) else: cbar.set_label("Average Flux in Bin {}".format(unit)) elif method == "sigma": if bin_points == 1: cbar.set_label( "Flux in units of Standard Deviation " r"$(f - \overline{f})/(\sigma_f)$" ) else: cbar.set_label( "Average Flux in Bin in units of Standard Deviation " r"$(f - \overline{f})/(\sigma_f)$" ) ax.set_xlabel("Phase") ax.set_ylabel("Cycle") ax.set_ylim(cyc.max(), 0) ax.set_title(self.meta.get("LABEL")) a = cyc.max() * 0.1 / 12.0 b = (cyc.max() - cyc.min()) / (bs.max() - bs.min()) ax.set_aspect(a / b) return ax
[docs] def create_transit_mask(self, period, transit_time, duration): """Returns a boolean array that is ``True`` during transits and ``False`` elsewhere. This method supports multi-planet systems by allowing ``period``, ``transit_time``, and ``duration`` to be array-like lists of parameters. Parameters ---------- period : `~astropy.units.Quantity`, float, or array-like Period(s) of the transits. duration : `~astropy.units.Quantity`, float, or array-like Duration(s) of the transits. transit_time : `~astropy.time.Time`, float, or array-like Transit midpoint(s) of the transits. Returns ------- transit_mask : np.array of bool Mask that flags transits. Mask is ``True`` where there are transits. Examples -------- You can create a transit mask for a single-planet system as follows:: >>> import lightkurve as lk >>> lc = lk.LightCurve({'time': [1, 2, 3, 4, 5], 'flux': [1, 1, 1, 1, 1]}) >>> lc.create_transit_mask(transit_time=2., period=2., duration=0.1) array([False, True, False, True, False]) The method accepts lists of parameters to support multi-planet systems:: >>> lc.create_transit_mask(transit_time=[2., 3.], period=[2., 10.], duration=[0.1, 0.1]) array([False, True, True, True, False]) """ # Convert Quantity objects to floats in units "day" period = _to_unitless_day(period) duration = _to_unitless_day(duration) # If ``transit_time`` is a ``Quantity```, attempt converting it to a ``Time`` object if isinstance(transit_time, Quantity): transit_time = Time(transit_time, format=self.time.format, scale=self.time.scale) # Ensure all parameters are 1D-arrays period = np.atleast_1d(period) duration = np.atleast_1d(duration) transit_time = np.atleast_1d(transit_time) # Make sure all params have the same number of entries n_planets = len(period) if any(len(param) != n_planets for param in [duration, transit_time]): raise ValueError( "period, duration, and transit_time must have " "the same number of values." ) # Initialize an empty cadence mask in_transit = np.empty(len(self), dtype=bool) in_transit[:] = False # Create the transit mask for per, dur, tt in zip(period, duration, transit_time): if isinstance(tt, Time): # If a `Time` is passed, ensure it has the right format & scale tt = Time(tt, format=self.time.format, scale=self.time.scale).value hp = per / 2.0 in_transit |= np.abs((self.time.value - tt + hp) % per - hp) < 0.5 * dur return in_transit
[docs] def search_neighbors( self, limit: int = 10, radius: float = 3600.0, **search_criteria ): """Search the data archive at MAST for the most nearby light curves. By default, the 10 nearest neighbors located within 3600 arcseconds are returned. You can override these defaults by changing the `limit` and `radius` parameters. If the LightCurve object is a Kepler, K2, or TESS light curve, the default behavior of this method is to only return light curves obtained during the exact same quarter, campaign, or sector. This is useful to enable coeval light curves to be inspected for spurious noise signals in common between multiple neighboring targets. You can override this default behavior by passing a `mission`, `quarter`, `campaign`, or `sector` argument yourself. Please refer to the docstring of `search_lightcurve` for a complete list of search parameters accepted. Parameters ---------- limit : int Maximum number of results to return. radius : float or `astropy.units.Quantity` object Conesearch radius. If a float is given it will be assumed to be in units of arcseconds. **search_criteria : kwargs Extra criteria to be passed to `search_lightcurve`. Returns ------- result : :class:`SearchResult` object Object detailing the neighbor light curves found, sorted by distance from the current light curve. """ # Local import to avoid circular dependency from .search import search_lightcurve # By default, only return results from the same sector/quarter/campaign if ( "mission" not in search_criteria and "sector" not in search_criteria and "quarter" not in search_criteria and "campaign" not in search_criteria ): mission = self.meta.get("MISSION", None) if mission == "TESS": search_criteria["sector"] = self.sector elif mission == "Kepler": search_criteria["quarter"] = self.quarter elif mission == "K2": search_criteria["campaign"] = self.campaign # Note: we increase `limit` by one below to account for the fact that the # current light curve will be returned by the search operation log.info( f"Started searching for up to {limit} neighbors within {radius} arcseconds." ) result = search_lightcurve( f"{self.ra} {self.dec}", radius=radius, limit=limit + 1, **search_criteria ) # Filter by distance > 0 to avoid returning the current light curve result = result[result.distance > 0] log.info(f"Found {len(result)} neighbors.") return result
[docs] def head(self, n: int = 5): """Return the first n rows. Parameters ---------- n : int Number of rows to return. Returns ------- lc : LightCurve Light curve containing the first n rows. """ return self[:n]
[docs] def tail(self, n: int = 5): """Return the last n rows. Parameters ---------- n : int Number of rows to return. Returns ------- lc : LightCurve Light curve containing the last n rows. """ return self[-n:]
[docs] def truncate(self, before: float = None, after: float = None, column: str = "time"): """Truncates the light curve before and after some time value. Parameters ---------- before : float Truncate all rows before this time value. after : float Truncate all rows after this time value. column : str, optional The name of the column on which the truncation is based. Defaults to 'time'. Returns ------- truncated_lc : LightCurve The truncated light curve. """ def _to_unitless(data): return np.asarray(getattr(data, "value", data)) mask = np.ones(len(self), dtype=bool) if before: mask &= _to_unitless(getattr(self, column)) >= before if after: mask &= _to_unitless(getattr(self, column)) <= after return self[mask]
[docs]class FoldedLightCurve(LightCurve): """Subclass of `LightCurve` in which the ``time`` parameter represents phase values. Compared to the `~lightkurve.lightcurve.LightCurve` base class, this class has extra meta data entries (``period``, ``epoch_time``, ``epoch_phase``, ``wrap_phase``, ``normalize_phase``), an extra column (``time_original``), extra properties (``phase``, ``odd_mask``, ``even_mask``), and implements different plotting defaults. """ @property def phase(self): """Alias for `LightCurve.time`.""" return self.time @property def cycle(self): """The cycle of the correspond `time_original`. The first cycle is cycle 0, irrespective of whether it is a complete one or not. """ epoch_time = self.meta.get("EPOCH_TIME") if epoch_time is None: # explicit check needed (cannot be the default value in get() function call above) # because Lightcurve.fold() will put an explicit None in meta, if epoch_time is not specified. epoch_time = self.time.min() cycle_epoch_start = epoch_time - self.period / 2 result = np.asarray(np.floor(((self.time_original - cycle_epoch_start) / self.period).value), dtype=int) result = result - result.min() return result @property def odd_mask(self): """Boolean mask which flags the odd-numbered cycles (1, 3, 5, etc). This is useful for studying every second occurence of a signal. For example, in exoplanet searches, comparisons of odd and even transits can help confirm the planetary nature of a signal. Differences in the depth, duration, or shape of the odd- and even-numbered transits would indicate that the 'transits' are being caused by a near-equal mass eclipsing background binary, rather than a true transiting exoplanet. Examples -------- You can can visualize the odd- and even-centered transits separately as follows: >>> f = lc.fold(...) # doctest: +SKIP >>> f[f.odd_mask].scatter() # doctest: +SKIP >>> f[f.even_mask].scatter() # doctest: +SKIP """ return self.cycle % 2 == 1 @property def even_mask(self): """Boolean mask which flags the even-numbered cycles (2, 4, 6, etc). See the documentation of `odd_mask` for examples. """ return ~self.odd_mask def _set_xlabel(self, kwargs): """Helper function for plot, scatter, and errorbar. Ensures the xlabel is correctly set for folded light curves. """ if "xlabel" not in kwargs: kwargs["xlabel"] = "Phase" if isinstance(self.time, TimeDelta): kwargs["xlabel"] += f" [{self.time.format.upper()}]" return kwargs
[docs] def plot(self, **kwargs): """Plot the folded light curve using matplotlib's `~matplotlib.pyplot.plot` method. See `LightCurve.plot` for details on the accepted arguments. Parameters ---------- kwargs : dict Dictionary of arguments to be passed to `LightCurve.plot`. Returns ------- ax : `~matplotlib.axes.Axes` The matplotlib axes object. """ kwargs = self._set_xlabel(kwargs) return super(FoldedLightCurve, self).plot(**kwargs)
[docs] def scatter(self, **kwargs): """Plot the folded light curve using matplotlib's `~matplotlib.pyplot.scatter` method. See `LightCurve.scatter` for details on the accepted arguments. Parameters ---------- kwargs : dict Dictionary of arguments to be passed to `LightCurve.scatter`. Returns ------- ax : `~matplotlib.axes.Axes` The matplotlib axes object. """ kwargs = self._set_xlabel(kwargs) return super(FoldedLightCurve, self).scatter(**kwargs)
[docs] def errorbar(self, **kwargs): """Plot the folded light curve using matplotlib's `~matplotlib.pyplot.errorbar` method. See `LightCurve.scatter` for details on the accepted arguments. Parameters ---------- kwargs : dict Dictionary of arguments to be passed to `LightCurve.scatter`. Returns ------- ax : `~matplotlib.axes.Axes` The matplotlib axes object. """ kwargs = self._set_xlabel(kwargs) return super(FoldedLightCurve, self).errorbar(**kwargs)
[docs] def plot_river(self, **kwargs): """Plot the folded light curve in a river style. See `~LightCurve.plot_river` for details on the accepted arguments. Parameters ---------- kwargs : dict Dictionary of arguments to be passed to `~LightCurve.plot_river`. Returns ------- ax : `~matplotlib.axes.Axes` The matplotlib axes object. """ ax = super(FoldedLightCurve, self).plot_river( period=self.period, epoch_time=self.epoch_time, **kwargs ) return ax
class KeplerLightCurve(LightCurve): """Subclass of :class:`LightCurve <lightkurve.lightcurve.LightCurve>` to represent data from NASA's Kepler and K2 mission.""" _deprecated_keywords = ( "targetid", "label", "time_format", "time_scale", "flux_unit", "quality_bitmask", "channel", "campaign", "quarter", "mission", "ra", "dec", ) _default_time_format = "bkjd" @classmethod def read(cls, *args, **kwargs): """Returns a `KeplerLightCurve` by reading the given file. Parameters ---------- filename : str Local path or remote url of a Kepler light curve FITS file. flux_column : str, optional The column in the FITS file to be read as `flux`. Defaults to 'pdcsap_flux'. Typically 'pdcsap_flux' or 'sap_flux'. quality_bitmask : str or int, optional Bitmask (integer) which identifies the quality flag bitmask that should be used to mask out bad cadences. If a string is passed, it has the following meaning: * "none": no cadences will be ignored * "default": cadences with severe quality issues will be ignored * "hard": more conservative choice of flags to ignore This is known to remove good data. * "hardest": removes all data that has been flagged This mask is not recommended. See the :class:`KeplerQualityFlags <lightkurve.utils.KeplerQualityFlags>` class for details on the bitmasks. format : str, optional The format of the Kepler FITS file. Should be one of 'kepler', 'k2sff', 'everest'. Defaults to 'kepler'. """ # Default to Kepler file format if kwargs.get("format") is None: kwargs["format"] = "kepler" return super().read(*args, **kwargs) def to_fits( self, path=None, overwrite=False, flux_column_name="FLUX", aperture_mask=None, **extra_data, ): """Writes the KeplerLightCurve to a FITS file. Parameters ---------- path : string, default None File path, if `None` returns an astropy.io.fits.HDUList object. overwrite : bool Whether or not to overwrite the file flux_column_name : str The name of the label for the FITS extension, e.g. SAP_FLUX or FLUX aperture_mask : array-like Optional 2D aperture mask to save with this lightcurve object, if defined. The mask can be either a boolean mask or an integer mask mimicking the Kepler/TESS convention; boolean masks are automatically converted to the Kepler/TESS conventions extra_data : dict Extra keywords or columns to include in the FITS file. Arguments of type str, int, float, or bool will be stored as keywords in the primary header. Arguments of type np.array or list will be stored as columns in the first extension. Returns ------- hdu : astropy.io.fits Returns an astropy.io.fits object if path is None """ kepler_specific_data = { "TELESCOP": "KEPLER", "INSTRUME": "Kepler Photometer", "OBJECT": "{}".format(self.targetid), "KEPLERID": self.targetid, "CHANNEL": self.channel, "MISSION": self.mission, "RA_OBJ": self.ra, "DEC_OBJ": self.dec, "EQUINOX": 2000, "DATE-OBS": Time(self.time[0] + 2454833.0, format=("jd")).isot, "SAP_QUALITY": self.quality, "MOM_CENTR1": self.centroid_col, "MOM_CENTR2": self.centroid_row, } for kw in kepler_specific_data: if ~np.asarray([kw.lower == k.lower() for k in extra_data]).any(): extra_data[kw] = kepler_specific_data[kw] hdu = super(KeplerLightCurve, self).to_fits( path=None, overwrite=overwrite, **extra_data ) hdu[0].header["QUARTER"] = self.meta.get("QUARTER") hdu[0].header["CAMPAIGN"] = self.meta.get("CAMPAIGN") hdu = _make_aperture_extension(hdu, aperture_mask) if path is not None: hdu.writeto(path, overwrite=overwrite, checksum=True) else: return hdu class TessLightCurve(LightCurve): """Subclass of :class:`LightCurve <lightkurve.lightcurve.LightCurve>` to represent data from NASA's TESS mission.""" _deprecated_keywords = ( "targetid", "label", "time_format", "time_scale", "flux_unit", "quality_bitmask", "sector", "camera", "ccd", "mission", "ra", "dec", ) _default_time_format = "btjd" @classmethod def read(cls, *args, **kwargs): """Returns a `TessLightCurve` by reading the given file. Parameters ---------- filename : str Local path or remote url of a TESS light curve FITS file. flux_column : str, optional The column in the FITS file to be read as `flux`. Defaults to 'pdcsap_flux'. Typically 'pdcsap_flux' or 'sap_flux'. quality_bitmask : str or int, optional Bitmask (integer) which identifies the quality flag bitmask that should be used to mask out bad cadences. If a string is passed, it has the following meaning: * "none": no cadences will be ignored * "default": cadences with severe quality issues will be ignored * "hard": more conservative choice of flags to ignore This is known to remove good data. * "hardest": removes all data that has been flagged This mask is not recommended. See the :class:`TessQualityFlags <lightkurve.utils.TessQualityFlags>` class for details on the bitmasks. """ # Default to TESS file format if kwargs.get("format") is None: kwargs["format"] = "tess" return super().read(*args, **kwargs) def to_fits( self, path=None, overwrite=False, flux_column_name="FLUX", aperture_mask=None, **extra_data, ): """Writes the KeplerLightCurve to a FITS file. Parameters ---------- path : string, default None File path, if `None` returns an astropy.io.fits.HDUList object. overwrite : bool Whether or not to overwrite the file flux_column_name : str The name of the label for the FITS extension, e.g. SAP_FLUX or FLUX aperture_mask : array-like Optional 2D aperture mask to save with this lightcurve object, if defined. The mask can be either a boolean mask or an integer mask mimicking the Kepler/TESS convention; boolean masks are automatically converted to the Kepler/TESS conventions extra_data : dict Extra keywords or columns to include in the FITS file. Arguments of type str, int, float, or bool will be stored as keywords in the primary header. Arguments of type np.array or list will be stored as columns in the first extension. Returns ------- hdu : astropy.io.fits Returns an astropy.io.fits object if path is None """ tess_specific_data = { "OBJECT": "{}".format(self.targetid), "MISSION": self.meta.get("MISSION"), "RA_OBJ": self.meta.get("RA"), "TELESCOP": self.meta.get("MISSION"), "CAMERA": self.meta.get("CAMERA"), "CCD": self.meta.get("CCD"), "SECTOR": self.meta.get("SECTOR"), "TARGETID": self.meta.get("TARGETID"), "DEC_OBJ": self.meta.get("DEC"), "MOM_CENTR1": self.centroid_col, "MOM_CENTR2": self.centroid_row, } for kw in tess_specific_data: if ~np.asarray([kw.lower == k.lower() for k in extra_data]).any(): extra_data[kw] = tess_specific_data[kw] hdu = super(TessLightCurve, self).to_fits( path=None, overwrite=overwrite, **extra_data ) # We do this because the TESS file format is subtly different in the # name of this column. hdu[1].columns.change_name("SAP_QUALITY", "QUALITY") hdu = _make_aperture_extension(hdu, aperture_mask) if path is not None: hdu.writeto(path, overwrite=overwrite, checksum=True) else: return hdu # Helper functions def _boolean_mask_to_bitmask(aperture_mask): """Takes in an aperture_mask and returns a Kepler-style bitmask Parameters ---------- aperture_mask : array-like 2D aperture mask. The mask can be either a boolean mask or an integer mask mimicking the Kepler/TESS convention; boolean or boolean-like masks are converted to the Kepler/TESS conventions. Kepler bitmasks are returned unchanged except for possible datatype conversion. Returns ------- bitmask : numpy uint8 array A bitmask incompletely mimicking the Kepler/TESS convention: Bit 2, value = 3, means "pixel was part of the custom aperture". The other bits have no meaning and are currently assigned a value of 1. """ # Masks can either be boolean input or Kepler pipeline style clean_mask = np.nan_to_num(aperture_mask) contains_bit2 = (clean_mask.astype(np.int_) & 2).any() all_zeros_or_ones = (clean_mask.dtype in ["float", "int"]) & ( (set(np.unique(clean_mask)) - {0, 1}) == set() ) is_bool_mask = (aperture_mask.dtype == "bool") | all_zeros_or_ones if is_bool_mask: out_mask = np.ones(aperture_mask.shape, dtype=np.uint8) out_mask[aperture_mask == 1] = 3 out_mask = out_mask.astype(np.uint8) elif contains_bit2: out_mask = aperture_mask.astype(np.uint8) else: log.warn( "The input aperture mask must be boolean or follow the " "Kepler-pipeline standard; returning None." ) out_mask = None return out_mask def _make_aperture_extension(hdu_list, aperture_mask): """Returns an `ImageHDU` object containing the 'APERTURE' extension of a light curve file.""" if aperture_mask is not None: bitmask = _boolean_mask_to_bitmask(aperture_mask) hdu = fits.ImageHDU(bitmask) hdu.header["EXTNAME"] = "APERTURE" hdu_list.append(hdu) return hdu_list